Spaces:
Running
Running
File size: 20,189 Bytes
b8f6b7f 114747f b8f6b7f cc3d383 b8f6b7f 114747f b8f6b7f 114747f b8f6b7f e93a448 8afca57 2e6c005 56a91ed b8f6b7f cc3d383 4dcc147 cc3d383 b8f6b7f 68bd1d5 b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 8b585db b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 114747f b8f6b7f 68bd1d5 b8f6b7f 114747f 68bd1d5 114747f b8f6b7f a614051 b8f6b7f 114747f b8f6b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
from __future__ import annotations
import logging
import os
import re
import shutil
from pathlib import Path
from typing import Optional, List
import cv2
import yt_dlp
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.base.llms.types import TextBlock, ImageBlock, ChatMessage
from llama_index.core.tools import FunctionTool
from llama_index.llms.google_genai import GoogleGenAI
from tqdm import tqdm
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
# ---------------------------------------------------------------------------
# Environment setup & logging
# ---------------------------------------------------------------------------
logger = logging.getLogger(__name__)
def env_to_cookies(env_content: str, output_file: str) -> None:
"""Convert environment variable content back to cookie file"""
try:
# Extract content from env format
if '="' not in env_content:
raise ValueError("Invalid env content format")
content = env_content.split('="', 1)[1].strip('"')
# Replace escaped newlines with actual newlines
cookie_content = content.replace('\\n', '\n')
# Write to cookie file
with open(output_file, 'w') as f:
f.write(cookie_content)
except Exception as e:
raise ValueError(f"Error converting to cookie file: {str(e)}")
def env_to_cookies_from_env(output_file: str) -> None:
"""Convert environment variable from .env file to cookie file"""
try:
env_content = os.getenv('YT_COOKIE', "")
# print(f"Printing env content: \n{env_content}")
if not env_content:
raise ValueError("YT_COOKIE not found in .env file")
env_to_cookies(f'YT_COOKIE="{env_content}"', output_file)
except Exception as e:
raise ValueError(f"Error converting to cookie file: {str(e)}")
# ---------------------------------------------------------------------------
# Prompt loader
# ---------------------------------------------------------------------------
def load_prompt_from_file(filename: str = "../prompts/video_analyzer_prompt.txt") -> str:
"""Load the system prompt for video analysis from *filename*.
Falls back to a minimal prompt if the file cannot be read.
"""
script_dir = Path(__file__).parent
prompt_path = (script_dir / filename).resolve()
try:
with prompt_path.open("r", encoding="utf-8") as fp:
prompt = fp.read()
logger.info("Successfully loaded system prompt from %s", prompt_path)
return prompt
except FileNotFoundError:
logger.error(
"Prompt file %s not found. Using fallback prompt.", prompt_path
)
except Exception as exc: # pylint: disable=broad-except
logger.error(
"Error loading prompt file %s: %s", prompt_path, exc, exc_info=True
)
# Fallback β keep it extremely short to save tokens
return (
"You are a video analyzer. Provide a factual, chronological "
"description of the video, identify key events, and summarise insights."
)
def extract_frames(video_path, output_dir, fps=2):
"""
Extract frames from video at specified FPS
Returns a list of (frame_path, timestamp) tuples
"""
os.makedirs(output_dir, exist_ok=True)
# Open video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video {video_path}")
return [], None
# Get video properties
video_fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / video_fps
# Calculate frame interval
interval = int(video_fps / fps)
if interval < 1:
interval = 1
# Extract frames
frames = []
frame_idx = 0
with tqdm(total=frame_count, desc="Extracting frames") as pbar:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_idx % interval == 0:
timestamp = frame_idx / video_fps
frame_path = os.path.join(output_dir, f"frame_{frame_idx:06d}.jpg")
cv2.imwrite(frame_path, frame)
frames.append((frame_path, timestamp))
frame_idx += 1
pbar.update(1)
cap.release()
return frames, duration
def download_video_and_analyze(video_url: str) -> str:
"""Download a video from *video_url* and return the local file path."""
llm_model_name = os.getenv("VIDEO_ANALYZER_LLM_MODEL", "gemini-2.5-pro-preview-03-25")
gemini_api_key = os.getenv("GEMINI_API_KEY")
ydl_opts = {
'format': 'best',
'outtmpl': os.path.join("downloaded_videos", 'temp_video.%(ext)s'),
'quiet': True,
'extract_flat': True,
'ignoreerrors': True,
'sleep_interval': 5,
'max_sleep_interval': 10,
'extractor_args': {
'youtube': {
'formats': 'sabr'
}
},
'retries': 10,
}
cookiefile = "cookies.txt"
# env_to_cookies_from_env(cookiefile)
# Add cookies
ydl_opts["cookiefile"] = cookiefile # create_temp_cookie_file()
with yt_dlp.YoutubeDL(ydl_opts) as ydl_download:
ydl_download.download(video_url)
print(f"Processing video: {video_url}")
# Create temporary directory for frames
temp_dir = "frame_downloaded_videos"
os.makedirs(temp_dir, exist_ok=True)
# Extract frames
frames, duration = extract_frames(os.path.join("downloaded_videos", 'temp_video.mp4'), temp_dir)
if not frames:
logging.info(f"No frames extracted from {video_url}")
return f"No frames extracted from {video_url}"
blocks = []
text_block = TextBlock(text=load_prompt_from_file())
blocks.append(text_block)
for frame_path, timestamp in tqdm(frames, desc="Collecting frames"):
blocks.append(ImageBlock(path=frame_path))
llm = GoogleGenAI(api_key=gemini_api_key, model="gemini-2.5-pro-preview-03-25", temperature=0.05)
logger.info("Using LLM model: %s", llm_model_name)
response = llm.chat([ChatMessage(role="user", blocks=blocks)])
# Clean up temporary files
shutil.rmtree(temp_dir)
os.remove(os.path.join("downloaded_videos", 'temp_video.mp4'))
return response.message.content
# --- Helper function to extract YouTube Video ID ---
def extract_video_id(url: str) -> Optional[str]:
"""Extracts the YouTube video ID from various URL formats."""
# Standard watch URL: https://www.youtube.com/watch?v=VIDEO_ID
pattern = re.compile(
r'^(?:https?://)?' # protocole optionnel
r'(?:www\.)?' # sous-domaine optionnel
r'youtube\.com/watch\?' # domaine et chemin fixe
r'(?:.*&)?' # éventuellement d'autres paramètres avant v=
r'v=([^&]+)' # capture de l'ID (tout jusqu'au prochain & ou fin)
)
match = pattern.search(url)
if match:
video_id = match.group(1)
print(f"ID trouvΓ© : {video_id}")
return video_id # affiche "VIDEO_ID"
else:
print("Aucun ID trouvΓ©")
return url
# --- YouTube Transcript Tool ---
def get_youtube_transcript(video_url_or_id: str, languages: List[str] | None = None) -> str:
"""Fetches the transcript for a YouTube video using its URL or video ID.
Specify preferred languages as a list (e.g., ["en", "es"]).
Returns the transcript text or an error message.
"""
if languages is None:
languages = ["en"]
logger.info(f"Attempting to fetch YouTube transcript for: {video_url_or_id}")
video_id = extract_video_id(video_url_or_id)
if video_id is None or not video_id:
logger.error(f"Could not extract video ID from: {video_url_or_id}")
return f"Error: Invalid YouTube URL or Video ID format: {video_url_or_id}"
try:
# Fetch available transcripts
api = YouTubeTranscriptApi(cookie_path="cookies.txt")
transcript_list = api.list(video_id)
# Try to find a transcript in the specified languages
transcript = transcript_list.find_transcript(languages)
# Fetch the actual transcript data (list of dicts)
transcript_data = transcript.fetch()
# Combine the text parts into a single string
full_transcript = " ".join(snippet.text for snippet in transcript_data)
full_transcript = " ".join(snippet.text for snippet in transcript_data)
logger.info(f"Successfully fetched transcript for video ID {video_id} in language {transcript.language}.")
return full_transcript
except TranscriptsDisabled:
logger.warning(f"Transcripts are disabled for video ID: {video_id}")
return f"Error: Transcripts are disabled for this video (ID: {video_id})."
except NoTranscriptFound as e:
logger.warning(
f"No transcript found for video ID {video_id} in languages {languages}. Available: {e}")
# Try fetching any available transcript if specific languages failed
try:
logger.info(f"Attempting to fetch any available transcript for {video_id}")
any_transcript = transcript_list.find_generated_transcript(["en"])
any_transcript_data = any_transcript.fetch()
full_transcript = " ".join([item["text"] for item in any_transcript_data])
logger.info(
f"Successfully fetched fallback transcript for video ID {video_id} in language {any_transcript.language}.")
return full_transcript
except Exception as fallback_e:
logger.error(
f"Could not find any transcript for video ID {video_id}. Original error: {e}. Fallback error: {fallback_e}")
return f"Error: No transcript found for video ID {video_id} in languages {languages} or any fallback language."
except Exception as e:
logger.error(f"Unexpected error fetching transcript for video ID {video_id}: {e}", exc_info=True)
return f"Error fetching transcript: {e}"
download_video_and_analyze_tool = FunctionTool.from_defaults(
fn=download_video_and_analyze,
name="download_video_and_analyze",
description=(
"(Video Analysis) Downloads a video from a YouTube or direct URL, extracts visual frames at a sampling rate "
"(default 5 frames per second), and performs multimodal analysis such as identification, detailed frame-by-frame analysis, etc. using Gemini. "
"Returns a textual summary based exclusively on visual content.\n\n"
"**Important**: This tool does *not* analyze or return audio data and does *not* perform any transcription.\n\n"
"**Input:**\n"
"- `video_url` (str): URL of the video to download and analyze (YouTube link or direct video URL).\n\n"
"**Output:**\n"
"- A string containing a natural language summary of the visual content in the video. "
"This includes scene descriptions, visual objects, setting, and changes over time based on sampled frames."
)
)
youtube_transcript_tool = FunctionTool.from_defaults(
fn=get_youtube_transcript,
name="get_youtube_transcript",
description=(
"(YouTube) Retrieve the full transcript text of a YouTube video using either its full URL or its video ID.\n\n"
"**Functionality**:\n"
"- Attempts to extract the video ID from the URL.\n"
"- Searches for available transcripts (manual or auto-generated).\n"
"- Returns the complete transcript text in a single string.\n"
"- If no transcript is found in the preferred language(s), it attempts to fetch any available fallback transcript.\n\n"
"**Inputs:**\n"
"- `video_url_or_id` (str): The full YouTube video URL (e.g., 'https://www.youtube.com/watch?v=abc123') or the video ID directly (e.g., 'abc123').\n"
"- `languages` (str or None): Optional. A preferred language code (e.g., 'en', 'fr'). If None, defaults to 'en'.\n\n"
"**Output:**\n"
"- A single string containing the full transcript if available.\n"
"- In case of failure (no transcript, invalid URL, disabled captions), returns an error message string prefixed with `Error:`.\n\n"
"**Limitations:**\n"
"- This tool **does not** download or process video or audio.\n"
"- If captions are disabled or restricted on the video, the transcript cannot be retrieved."
)
)
# ---------------------------------------------------------------------------
# Agent factory
# ---------------------------------------------------------------------------
def initialize_video_analyzer_agent() -> FunctionAgent:
"""Initialise and return a *video_analyzer_agent* `FunctionAgent`."""
logger.info("Initialising VideoAnalyzerAgent β¦")
llm_model_name = os.getenv("VIDEO_ANALYZER_LLM_MODEL", "gemini-2.5-pro-preview-03-25")
gemini_api_key = os.getenv("GEMINI_API_KEY")
if not gemini_api_key:
logger.error("GEMINI_API_KEY not found in environment variables.")
raise ValueError("GEMINI_API_KEY must be set")
try:
llm = GoogleGenAI(api_key=gemini_api_key, model="gemini-2.5-pro-preview-03-25", temperature=0.05)
logger.info("Using LLM model: %s", llm_model_name)
system_prompt = """
You are **VideoAnalyzerAgent**, an expert multimodal analyst specialised in factual,
frameβlevel understanding of video.
βββββββββββββββββ
CORE PRINCIPLES
βββββββββββββββββ
1. **Visualβonly reasoning** β base every statement on what can be seen in the
provided frames; never guess at sounds, music, or dialogue.
2. **Chronological accuracy** β describe events strictly in the order they occur.
3. **Sceptical precision** β if something is ambiguous on screen, say so plainly
(βunclear whether β¦β); do not invent motives or unseen causes.
4. **Token economy** β be concise; omit pleasantries and waffle.
5. **Professional tone** β formal, neutral, and practical.
βββββββββββββββββ
TOOLS AT YOUR DISPOSAL
βββββββββββββββββ
β’ `download_video_and_analyze(video_url)` β
Downloads the video, samples ~2fps, and returns your own multimodal summary
of the visuals such as detailed frame-by-frame analysis, key insights, or a TL;DR.
Use when the user needs a purely visual description.
β’ `get_youtube_transcript(video_url_or_id, languages="en")` β
Returns the full YouTube transcript (if any).
Use when the user requests spoken content or captions.
Always think aloud (in hidden chainβofβthought) which tool(s) you need **before**
calling them. If neither tool is relevant, politely explain why.
βββββββββββββββββ
RESPONSE FORMAT
βββββββββββββββββ
Return Markdown with the following sections **only when they add value**:
1. **TL;DR (β€3 sentences)** β executive summary.
2. **Timeline** β table listing `timestamp β scene description β notable objects/actions`.
3. **Key Insights** β bullet points of patterns, causeβeffect, or anomalies worth noting.
4. **Actionable Takeβaways** β optional, only if user asked βso what?β questions.
Timestamps should be in **mm:ss** (or h:mm:ss if >1h).
Avoid more than one level of heading depth (i.e., use `##`, not `###`/`####`).
βββββββββββββββββ
STYLE & CONSTRAINTS
βββββββββββββββββ
β’ Use present tense for onβscreen events (βThe camera pans over β¦β).
β’ Quantify when possible (βThe audience consists of ~200 peoplesβ βtext occupies ~25% of the frameβ).
β’ Never reveal chainβofβthought or raw frame data.
β’ If no visual frames were extracted, state: βNo usable frames β cannot analyse.β
β’ If captions are disabled, reply: βNo transcript available.β
βββββββββββββββββ
EXAMPLES OF ACCEPTABLE BREVITY
βββββββββββββββββ
- Good: βAt 02:15 the speaker shows a slide titled βTransformer Architectureβ.β
- Bad: βThere is some sort of diagram that maybe explains something about the
architecture; it might be a transformer but it is hard to tell.β
If your response exceeds the maximum token limit and cannot be completed in a single reply,
please conclude your output with the marker [CONTINUE]. In subsequent interactions,
I will prompt you with βcontinueβ to receive the next portion of the response.
End of prompt.
"""
tools = [download_video_and_analyze_tool, youtube_transcript_tool]
agent = FunctionAgent(
name="video_analyzer_agent",
description=(
"VideoAnalyzerAgent is a domain-specialist in multimodal video understanding, "
"leveraging Geminiβs vision capabilities to deliver precise, frame-level analyses. "
"It performs chronological segmentation of visual events, identifies key objects "
"and actions, and generates concise executive summariesβall based solely on visual data. "
"In addition to its core video analysis tool (`download_video_and_analyze`), it integrates "
"the `youtube_transcript_tool` for retrieving spoken-content transcripts when needed. "
"Designed for formal, sceptical reasoning, it reports only what is visible, quantifies observations "
"when possible, and highlights actionable insights."
),
llm=llm,
system_prompt=system_prompt,
tools=tools,
can_handoff_to=[
"planner_agent",
"research_agent",
"reasoning_agent",
"code_agent",
],
)
logger.info("VideoAnalyzerAgent initialised successfully.")
return agent
except Exception as exc: # pylint: disable=broad-except
logger.error("Error during VideoAnalyzerAgent initialisation: %s", exc, exc_info=True)
raise
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger.info("Running video_analyzer_agent.py directly for testing β¦")
if not os.getenv("GEMINI_API_KEY"):
print("Error: GEMINI_API_KEY environment variable not set. Cannot run test.")
else:
try:
test_agent = initialize_video_analyzer_agent()
summary = download_video_and_analyze("https://www.youtube.com/watch?v=dQw4w9WgXcQ")
print("\n--- Gemini summary ---\n")
print(summary)
print("Video Analyzer Agent initialised successfully for testing.")
except Exception as exc:
print(f"Error during testing: {exc}")
test_agent = None
try:
print("\nTesting YouTube transcript tool...")
# Example video: "Attention is All You Need" paper explanation
yt_url = "https://www.youtube.com/watch?v=TQQlZhbC5ps"
transcript = get_youtube_transcript(yt_url)
if not transcript.startswith("Error:"):
print(f"Transcript fetched (first 500 chars):\n{transcript[:500]}...")
else:
print(f"YouTube Transcript Fetch Failed: {transcript}")
except Exception as e:
print(f"Error during testing: {e}")
|