Spaces:
Sleeping
Sleeping
File size: 16,955 Bytes
a3290d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""
@author: louisblankemeier
"""
import math
import os
import shutil
import zipfile
from pathlib import Path
from time import time
from typing import Union
import nibabel as nib
import numpy as np
import pandas as pd
import wget
from PIL import Image
from totalsegmentatorv2.python_api import totalsegmentator
from comp2comp.inference_class_base import InferenceClass
from comp2comp.io import io_utils
from comp2comp.models.models import Models
from comp2comp.spine import spine_utils
from comp2comp.visualization.dicom import to_dicom
# from totalsegmentator.libs import (
# download_pretrained_weights,
# nostdout,
# setup_nnunet,
# )
class SpineSegmentation(InferenceClass):
"""Spine segmentation."""
def __init__(self, model_name, save=True):
super().__init__()
self.model_name = model_name
self.save_segmentations = save
def __call__(self, inference_pipeline):
# inference_pipeline.dicom_series_path = self.input_path
self.output_dir = inference_pipeline.output_dir
self.output_dir_segmentations = os.path.join(self.output_dir, "segmentations/")
if not os.path.exists(self.output_dir_segmentations):
os.makedirs(self.output_dir_segmentations)
self.model_dir = inference_pipeline.model_dir
# seg, mv = self.spine_seg(
# os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz"),
# self.output_dir_segmentations + "spine.nii.gz",
# inference_pipeline.model_dir,
# )
os.environ["TOTALSEG_WEIGHTS_PATH"] = self.model_dir
seg = totalsegmentator(
input=os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz"),
output=os.path.join(self.output_dir_segmentations, "segmentation.nii"),
task_ids=[292],
ml=True,
nr_thr_resamp=1,
nr_thr_saving=6,
fast=False,
nora_tag="None",
preview=False,
task="total",
# roi_subset=[
# "vertebrae_T12",
# "vertebrae_L1",
# "vertebrae_L2",
# "vertebrae_L3",
# "vertebrae_L4",
# "vertebrae_L5",
# ],
roi_subset=None,
statistics=False,
radiomics=False,
crop_path=None,
body_seg=False,
force_split=False,
output_type="nifti",
quiet=False,
verbose=False,
test=0,
skip_saving=True,
device="gpu",
license_number=None,
statistics_exclude_masks_at_border=True,
no_derived_masks=False,
v1_order=False,
)
mv = nib.load(
os.path.join(self.output_dir_segmentations, "converted_dcm.nii.gz")
)
# inference_pipeline.segmentation = nib.load(
# os.path.join(self.output_dir_segmentations, "segmentation.nii")
# )
inference_pipeline.segmentation = seg
inference_pipeline.medical_volume = mv
inference_pipeline.save_segmentations = self.save_segmentations
return {}
def setup_nnunet_c2c(self, model_dir: Union[str, Path]):
"""Adapted from TotalSegmentator."""
model_dir = Path(model_dir)
config_dir = model_dir / Path("." + self.model_name)
(config_dir / "nnunet/results/nnUNet/3d_fullres").mkdir(
exist_ok=True, parents=True
)
(config_dir / "nnunet/results/nnUNet/2d").mkdir(exist_ok=True, parents=True)
weights_dir = config_dir / "nnunet/results"
self.weights_dir = weights_dir
os.environ["nnUNet_raw_data_base"] = str(
weights_dir
) # not needed, just needs to be an existing directory
os.environ["nnUNet_preprocessed"] = str(
weights_dir
) # not needed, just needs to be an existing directory
os.environ["RESULTS_FOLDER"] = str(weights_dir)
def download_spine_model(self, model_dir: Union[str, Path]):
download_dir = Path(
os.path.join(
self.weights_dir,
"nnUNet/3d_fullres/Task252_Spine/nnUNetTrainerV2_ep4000_nomirror__nnUNetPlansv2.1",
)
)
fold_0_path = download_dir / "fold_0"
if not os.path.exists(fold_0_path):
download_dir.mkdir(parents=True, exist_ok=True)
wget.download(
"https://huggingface.co/louisblankemeier/spine_v1/resolve/main/fold_0.zip",
out=os.path.join(download_dir, "fold_0.zip"),
)
with zipfile.ZipFile(
os.path.join(download_dir, "fold_0.zip"), "r"
) as zip_ref:
zip_ref.extractall(download_dir)
os.remove(os.path.join(download_dir, "fold_0.zip"))
wget.download(
"https://huggingface.co/louisblankemeier/spine_v1/resolve/main/plans.pkl",
out=os.path.join(download_dir, "plans.pkl"),
)
print("Spine model downloaded.")
else:
print("Spine model already downloaded.")
def spine_seg(
self, input_path: Union[str, Path], output_path: Union[str, Path], model_dir
):
"""Run spine segmentation.
Args:
input_path (Union[str, Path]): Input path.
output_path (Union[str, Path]): Output path.
"""
print("Segmenting spine...")
st = time()
os.environ["SCRATCH"] = self.model_dir
os.environ["TOTALSEG_WEIGHTS_PATH"] = self.model_dir
# Setup nnunet
model = "3d_fullres"
folds = [0]
trainer = "nnUNetTrainerV2_ep4000_nomirror"
crop_path = None
task_id = [252]
if self.model_name == "ts_spine":
setup_nnunet()
download_pretrained_weights(task_id[0])
elif self.model_name == "stanford_spine_v0.0.1":
self.setup_nnunet_c2c(model_dir)
self.download_spine_model(model_dir)
else:
raise ValueError("Invalid model name.")
if not self.save_segmentations:
output_path = None
from totalsegmentator.nnunet import nnUNet_predict_image
with nostdout():
img, seg = nnUNet_predict_image(
input_path,
output_path,
task_id,
model=model,
folds=folds,
trainer=trainer,
tta=False,
multilabel_image=True,
resample=1.5,
crop=None,
crop_path=crop_path,
task_name="total",
nora_tag="None",
preview=False,
nr_threads_resampling=1,
nr_threads_saving=6,
quiet=False,
verbose=False,
test=0,
)
end = time()
# Log total time for spine segmentation
print(f"Total time for spine segmentation: {end-st:.2f}s.")
if self.model_name == "stanford_spine_v0.0.1":
seg_data = seg.get_fdata()
# subtract 17 from seg values except for 0
seg_data = np.where(seg_data == 0, 0, seg_data - 17)
seg = nib.Nifti1Image(seg_data, seg.affine, seg.header)
return seg, img
class AxialCropper(InferenceClass):
"""Crop the CT image (medical_volume) and segmentation based on user-specified
lower and upper levels of the spine.
"""
def __init__(self, lower_level: str = "L5", upper_level: str = "L1", save=True):
"""
Args:
lower_level (str, optional): Lower level of the spine. Defaults to "L5".
upper_level (str, optional): Upper level of the spine. Defaults to "L1".
save (bool, optional): Save cropped image and segmentation. Defaults to True.
Raises:
ValueError: If lower_level or upper_level is not a valid spine level.
"""
super().__init__()
self.lower_level = lower_level
self.upper_level = upper_level
ts_spine_full_model = Models.model_from_name("ts_spine_full")
categories = ts_spine_full_model.categories
try:
self.lower_level_index = categories[self.lower_level]
self.upper_level_index = categories[self.upper_level]
except KeyError:
raise ValueError("Invalid spine level.") from None
self.save = save
def __call__(self, inference_pipeline):
"""
First dim goes from L to R.
Second dim goes from P to A.
Third dim goes from I to S.
"""
segmentation = inference_pipeline.segmentation
segmentation_data = segmentation.get_fdata()
upper_level_index = np.where(segmentation_data == self.upper_level_index)[
2
].max()
lower_level_index = np.where(segmentation_data == self.lower_level_index)[
2
].min()
segmentation = segmentation.slicer[:, :, lower_level_index:upper_level_index]
inference_pipeline.segmentation = segmentation
medical_volume = inference_pipeline.medical_volume
medical_volume = medical_volume.slicer[
:, :, lower_level_index:upper_level_index
]
inference_pipeline.medical_volume = medical_volume
if self.save:
nib.save(
segmentation,
os.path.join(
inference_pipeline.output_dir, "segmentations", "spine.nii.gz"
),
)
nib.save(
medical_volume,
os.path.join(
inference_pipeline.output_dir,
"segmentations",
"converted_dcm.nii.gz",
),
)
return {}
class SpineComputeROIs(InferenceClass):
def __init__(self, spine_model):
super().__init__()
self.spine_model_name = spine_model
self.spine_model_type = Models.model_from_name(self.spine_model_name)
def __call__(self, inference_pipeline):
# Compute ROIs
inference_pipeline.spine_model_type = self.spine_model_type
(spine_hus, rois, segmentation_hus, centroids_3d) = spine_utils.compute_rois(
inference_pipeline.segmentation,
inference_pipeline.medical_volume,
self.spine_model_type,
)
inference_pipeline.spine_hus = spine_hus
inference_pipeline.segmentation_hus = segmentation_hus
inference_pipeline.rois = rois
inference_pipeline.centroids_3d = centroids_3d
return {}
class SpineMetricsSaver(InferenceClass):
"""Save metrics to a CSV file."""
def __init__(self):
super().__init__()
def __call__(self, inference_pipeline):
"""Save metrics to a CSV file."""
self.spine_hus = inference_pipeline.spine_hus
self.seg_hus = inference_pipeline.segmentation_hus
self.output_dir = inference_pipeline.output_dir
self.csv_output_dir = os.path.join(self.output_dir, "metrics")
if not os.path.exists(self.csv_output_dir):
os.makedirs(self.csv_output_dir, exist_ok=True)
self.save_results()
if hasattr(inference_pipeline, "dicom_ds"):
if not os.path.exists(os.path.join(self.output_dir, "dicom_metadata.csv")):
io_utils.write_dicom_metadata_to_csv(
inference_pipeline.dicom_ds,
os.path.join(self.output_dir, "dicom_metadata.csv"),
)
return {}
def save_results(self):
"""Save results to a CSV file."""
df = pd.DataFrame(columns=["Level", "ROI HU", "Seg HU"])
for i, level in enumerate(self.spine_hus):
hu = self.spine_hus[level]
seg_hu = self.seg_hus[level]
row = [level, hu, seg_hu]
df.loc[i] = row
df = df.iloc[::-1]
df.to_csv(os.path.join(self.csv_output_dir, "spine_metrics.csv"), index=False)
class SpineFindDicoms(InferenceClass):
def __init__(self):
super().__init__()
def __call__(self, inference_pipeline):
inferior_superior_centers = spine_utils.find_spine_dicoms(
inference_pipeline.centroids_3d,
)
spine_utils.save_nifti_select_slices(
inference_pipeline.output_dir, inferior_superior_centers
)
inference_pipeline.dicom_file_paths = [
str(center) for center in inferior_superior_centers
]
inference_pipeline.names = list(inference_pipeline.rois.keys())
inference_pipeline.dicom_file_names = list(inference_pipeline.rois.keys())
inference_pipeline.inferior_superior_centers = inferior_superior_centers
return {}
class SpineCoronalSagittalVisualizer(InferenceClass):
def __init__(self, format="png"):
super().__init__()
self.format = format
def __call__(self, inference_pipeline):
output_path = inference_pipeline.output_dir
spine_model_type = inference_pipeline.spine_model_type
img_sagittal, img_coronal = spine_utils.visualize_coronal_sagittal_spine(
inference_pipeline.segmentation.get_fdata(),
list(inference_pipeline.rois.values()),
inference_pipeline.medical_volume.get_fdata(),
list(inference_pipeline.centroids_3d.values()),
output_path,
spine_hus=inference_pipeline.spine_hus,
seg_hus=inference_pipeline.segmentation_hus,
model_type=spine_model_type,
pixel_spacing=inference_pipeline.pixel_spacing_list,
format=self.format,
)
inference_pipeline.spine_vis_sagittal = img_sagittal
inference_pipeline.spine_vis_coronal = img_coronal
inference_pipeline.spine = True
if not inference_pipeline.save_segmentations:
shutil.rmtree(os.path.join(output_path, "segmentations"))
return {}
class SpineReport(InferenceClass):
def __init__(self, format="png"):
super().__init__()
self.format = format
def __call__(self, inference_pipeline):
sagittal_image = inference_pipeline.spine_vis_sagittal
coronal_image = inference_pipeline.spine_vis_coronal
# concatenate these numpy arrays laterally
img = np.concatenate((coronal_image, sagittal_image), axis=1)
output_path = os.path.join(
inference_pipeline.output_dir, "images", "spine_report"
)
if self.format == "png":
im = Image.fromarray(img)
im.save(output_path + ".png")
elif self.format == "dcm":
to_dicom(img, output_path + ".dcm")
return {}
class SpineMuscleAdiposeTissueReport(InferenceClass):
"""Spine muscle adipose tissue report class."""
def __init__(self):
super().__init__()
self.image_files = [
"spine_coronal.png",
"spine_sagittal.png",
"T12.png",
"L1.png",
"L2.png",
"L3.png",
"L4.png",
"L5.png",
]
def __call__(self, inference_pipeline):
image_dir = Path(inference_pipeline.output_dir) / "images"
self.generate_panel(image_dir)
return {}
def generate_panel(self, image_dir: Union[str, Path]):
"""Generate panel.
Args:
image_dir (Union[str, Path]): Path to the image directory.
"""
image_files = [os.path.join(image_dir, path) for path in self.image_files]
# construct a list which includes only the images that exist
image_files = [path for path in image_files if os.path.exists(path)]
im_cor = Image.open(image_files[0])
im_sag = Image.open(image_files[1])
im_cor_width = int(im_cor.width / im_cor.height * 512)
num_muscle_fat_cols = math.ceil((len(image_files) - 2) / 2)
width = (8 + im_cor_width + 8) + ((512 + 8) * num_muscle_fat_cols)
height = 1048
new_im = Image.new("RGB", (width, height))
index = 2
for j in range(8, height, 520):
for i in range(8 + im_cor_width + 8, width, 520):
try:
im = Image.open(image_files[index])
im.thumbnail((512, 512))
new_im.paste(im, (i, j))
index += 1
im.close()
except Exception:
continue
im_cor.thumbnail((im_cor_width, 512))
new_im.paste(im_cor, (8, 8))
im_sag.thumbnail((im_cor_width, 512))
new_im.paste(im_sag, (8, 528))
new_im.save(os.path.join(image_dir, "spine_muscle_adipose_tissue_report.png"))
im_cor.close()
im_sag.close()
new_im.close()
|