Spaces:
Sleeping
Sleeping
File size: 25,649 Bytes
a3290d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
"""
@author: louisblankemeier
"""
import logging
import math
import os
from typing import Dict, List
import cv2
import nibabel as nib
import numpy as np
from scipy.ndimage import zoom
from comp2comp.spine import spine_visualization
def find_spine_dicoms(centroids: Dict): # , path: str, levels):
"""Find the dicom files corresponding to the spine T12 - L5 levels."""
vertical_positions = []
for level in centroids:
centroid = centroids[level]
vertical_positions.append(round(centroid[2]))
# dicom_files = []
# ipps = []
# for dicom_path in glob(path + "/*.dcm"):
# ipp = dcmread(dicom_path).ImagePositionPatient
# ipps.append(ipp[2])
# dicom_files.append(dicom_path)
# dicom_files = [x for _, x in sorted(zip(ipps, dicom_files))]
# dicom_files = list(np.array(dicom_files)[vertical_positions])
# return (dicom_files, levels, vertical_positions)
return vertical_positions
def save_nifti_select_slices(output_dir: str, vertical_positions):
nifti_path = os.path.join(output_dir, "segmentations", "converted_dcm.nii.gz")
nifti_in = nib.load(nifti_path)
nifti_np = nifti_in.get_fdata()
nifti_np = nifti_np[:, :, vertical_positions]
nifti_out = nib.Nifti1Image(nifti_np, nifti_in.affine, nifti_in.header)
# save the nifti
nifti_output_path = os.path.join(
output_dir, "segmentations", "converted_dcm.nii.gz"
)
nib.save(nifti_out, nifti_output_path)
# Function that takes a numpy array as input, computes the
# sagittal centroid of each label and returns a list of the
# centroids
def compute_centroids(seg: np.ndarray, spine_model_type):
"""Compute the centroids of the labels.
Args:
seg (np.ndarray): Segmentation volume.
spine_model_type (str): Model type.
Returns:
List[int]: List of centroids.
"""
# take values of spine_model_type.categories dictionary
# and convert to list
centroids = {}
for level in spine_model_type.categories:
label_idx = spine_model_type.categories[level]
try:
pos = compute_centroid(seg, "sagittal", label_idx)
centroids[level] = pos
except Exception:
logging.warning(f"Label {level} not found in segmentation volume.")
return centroids
# Function that takes a numpy array as input, as well as a list of centroids,
# takes a slice through the centroid on axis = 1 for each centroid
# and returns a list of the slices
def get_slices(seg: np.ndarray, centroids: Dict, spine_model_type):
"""Get the slices corresponding to the centroids.
Args:
seg (np.ndarray): Segmentation volume.
centroids (List[int]): List of centroids.
spine_model_type (str): Model type.
Returns:
List[np.ndarray]: List of slices.
"""
seg = seg.astype(np.uint8)
slices = {}
for level in centroids:
label_idx = spine_model_type.categories[level]
binary_seg = (seg[centroids[level], :, :] == label_idx).astype(int)
if (
np.sum(binary_seg) > 200
): # heuristic to make sure enough of the body is showing
slices[level] = binary_seg
return slices
# Function that takes a mask and for each deletes the right most
# connected component. Returns the mask with the right most
# connected component deleted
def delete_right_most_connected_component(mask: np.ndarray):
"""Delete the right most connected component corresponding to spinous processes.
Args:
mask (np.ndarray): Mask volume.
Returns:
np.ndarray: Mask volume.
"""
mask = mask.astype(np.uint8)
_, labels, _, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
right_most_connected_component = np.argmin(centroids[1:, 1]) + 1
mask[labels == right_most_connected_component] = 0
return mask
# compute center of mass of 2d mask
def compute_center_of_mass(mask: np.ndarray):
"""Compute the center of mass of a 2D mask.
Args:
mask (np.ndarray): Mask volume.
Returns:
np.ndarray: Center of mass.
"""
mask = mask.astype(np.uint8)
_, _, _, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
center_of_mass = np.mean(centroids[1:, :], axis=0)
return center_of_mass
# Function that takes a 3d centroid and retruns a binary mask with a 3d
# roi around the centroid
def roi_from_mask(img, centroid: np.ndarray):
"""Compute a 3D ROI from a 3D mask.
Args:
img (np.ndarray): Image volume.
centroid (np.ndarray): Centroid.
Returns:
np.ndarray: ROI volume.
"""
roi = np.zeros(img.shape)
img_np = img.get_fdata()
pixel_spacing = img.header.get_zooms()
length_i = 5.0 / pixel_spacing[0]
length_j = 5.0 / pixel_spacing[1]
length_k = 5.0 / pixel_spacing[2]
print(
f"Computing ROI with centroid {centroid[0]:.3f}, {centroid[1]:.3f}, {centroid[2]:.3f} "
f"and pixel spacing "
f"{pixel_spacing[0]:.3f}mm, {pixel_spacing[1]:.3f}mm, {pixel_spacing[2]:.3f}mm..."
)
# cubic ROI around centroid
"""
roi[
int(centroid[0] - length) : int(centroid[0] + length),
int(centroid[1] - length) : int(centroid[1] + length),
int(centroid[2] - length) : int(centroid[2] + length),
] = 1
"""
# spherical ROI around centroid
roi = np.zeros(img_np.shape)
i_lower = math.floor(centroid[0] - length_i)
j_lower = math.floor(centroid[1] - length_j)
k_lower = math.floor(centroid[2] - length_k)
i_lower_idx = 1000
j_lower_idx = 1000
k_lower_idx = 1000
i_upper_idx = 0
j_upper_idx = 0
k_upper_idx = 0
found_pixels = False
for i in range(i_lower, i_lower + 2 * math.ceil(length_i) + 1):
for j in range(j_lower, j_lower + 2 * math.ceil(length_j) + 1):
for k in range(k_lower, k_lower + 2 * math.ceil(length_k) + 1):
if (i - centroid[0]) ** 2 / length_i**2 + (
j - centroid[1]
) ** 2 / length_j**2 + (k - centroid[2]) ** 2 / length_k**2 <= 1:
roi[i, j, k] = 1
if i < i_lower_idx:
i_lower_idx = i
if j < j_lower_idx:
j_lower_idx = j
if k < k_lower_idx:
k_lower_idx = k
if i > i_upper_idx:
i_upper_idx = i
if j > j_upper_idx:
j_upper_idx = j
if k > k_upper_idx:
k_upper_idx = k
found_pixels = True
if not found_pixels:
print("No pixels in ROI!")
raise ValueError
print(
f"Number of pixels included in i, j, and k directions: {i_upper_idx - i_lower_idx + 1}, "
f"{j_upper_idx - j_lower_idx + 1}, {k_upper_idx - k_lower_idx + 1}"
)
return roi
# Function that takes a 3d image and a 3d binary mask and returns that average
# value of the image inside the mask
def mean_img_mask(img: np.ndarray, mask: np.ndarray, index: int):
"""Compute the mean of an image inside a mask.
Args:
img (np.ndarray): Image volume.
mask (np.ndarray): Mask volume.
rescale_slope (float): Rescale slope.
rescale_intercept (float): Rescale intercept.
Returns:
float: Mean value.
"""
img = img.astype(np.float32)
mask = mask.astype(np.float32)
img_masked = (img * mask)[mask > 0]
# mean = (rescale_slope * np.mean(img_masked)) + rescale_intercept
# median = (rescale_slope * np.median(img_masked)) + rescale_intercept
mean = np.mean(img_masked)
return mean
def compute_rois(seg, img, spine_model_type):
"""Compute the ROIs for the spine.
Args:
seg (np.ndarray): Segmentation volume.
img (np.ndarray): Image volume.
rescale_slope (float): Rescale slope.
rescale_intercept (float): Rescale intercept.
spine_model_type (Models): Model type.
Returns:
spine_hus (List[float]): List of HU values.
rois (List[np.ndarray]): List of ROIs.
centroids_3d (List[np.ndarray]): List of centroids.
"""
seg_np = seg.get_fdata()
centroids = compute_centroids(seg_np, spine_model_type)
slices = get_slices(seg_np, centroids, spine_model_type)
for level in slices:
slice = slices[level]
# keep only the two largest connected components
two_largest, two = keep_two_largest_connected_components(slice)
if two:
slices[level] = delete_right_most_connected_component(two_largest)
# Compute ROIs
rois = {}
spine_hus = {}
centroids_3d = {}
segmentation_hus = {}
for i, level in enumerate(slices):
slice = slices[level]
center_of_mass = compute_center_of_mass(slice)
centroid = np.array([centroids[level], center_of_mass[1], center_of_mass[0]])
roi = roi_from_mask(img, centroid)
image_numpy = img.get_fdata()
spine_hus[level] = mean_img_mask(image_numpy, roi, i)
rois[level] = roi
mask = (seg_np == spine_model_type.categories[level]).astype(int)
segmentation_hus[level] = mean_img_mask(image_numpy, mask, i)
centroids_3d[level] = centroid
return (spine_hus, rois, segmentation_hus, centroids_3d)
def keep_two_largest_connected_components(mask: Dict):
"""Keep the two largest connected components.
Args:
mask (np.ndarray): Mask volume.
Returns:
np.ndarray: Mask volume.
"""
mask = mask.astype(np.uint8)
# sort connected components by size
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(
mask, connectivity=8
)
stats = stats[1:, 4]
sorted_indices = np.argsort(stats)[::-1]
# keep only the two largest connected components
mask = np.zeros(mask.shape)
mask[labels == sorted_indices[0] + 1] = 1
two = True
try:
mask[labels == sorted_indices[1] + 1] = 1
except Exception:
two = False
return (mask, two)
def compute_centroid(seg: np.ndarray, plane: str, label: int):
"""Compute the centroid of a label in a given plane.
Args:
seg (np.ndarray): Segmentation volume.
plane (str): Plane.
label (int): Label.
Returns:
int: Centroid.
"""
if plane == "axial":
sum_out_axes = (0, 1)
sum_axis = 2
elif plane == "sagittal":
sum_out_axes = (1, 2)
sum_axis = 0
elif plane == "coronal":
sum_out_axes = (0, 2)
sum_axis = 1
sums = np.sum(seg == label, axis=sum_out_axes)
normalized_sums = sums / np.sum(sums)
pos = int(np.sum(np.arange(0, seg.shape[sum_axis]) * normalized_sums))
return pos
def to_one_hot(label: np.ndarray, model_type, spine_hus):
"""Convert a label to one-hot encoding.
Args:
label (np.ndarray): Label volume.
model_type (Models): Model type.
Returns:
np.ndarray: One-hot encoding volume.
"""
levels = list(spine_hus.keys())
levels.reverse()
one_hot_label = np.zeros((label.shape[0], label.shape[1], len(levels)))
for i, level in enumerate(levels):
label_idx = model_type.categories[level]
one_hot_label[:, :, i] = (label == label_idx).astype(int)
return one_hot_label
def visualize_coronal_sagittal_spine(
seg: np.ndarray,
rois: List[np.ndarray],
mvs: np.ndarray,
centroids_3d: np.ndarray,
output_dir: str,
spine_hus=None,
seg_hus=None,
model_type=None,
pixel_spacing=None,
format="png",
):
"""Visualize the coronal and sagittal planes of the spine.
Args:
seg (np.ndarray): Segmentation volume.
rois (List[np.ndarray]): List of ROIs.
mvs (dm.MedicalVolume): Medical volume.
centroids (List[int]): List of centroids.
label_text (List[str]): List of labels.
output_dir (str): Output directory.
spine_hus (List[float], optional): List of HU values. Defaults to None.
model_type (Models, optional): Model type. Defaults to None.
"""
sagittal_vals, coronal_vals = curved_planar_reformation(mvs, centroids_3d)
zoom_factor = pixel_spacing[2] / pixel_spacing[1]
sagittal_image = mvs[sagittal_vals, :, range(len(sagittal_vals))]
sagittal_label = seg[sagittal_vals, :, range(len(sagittal_vals))]
sagittal_image = zoom(sagittal_image, (zoom_factor, 1), order=3)
sagittal_label = zoom(sagittal_label, (zoom_factor, 1), order=1).round()
one_hot_sag_label = to_one_hot(sagittal_label, model_type, spine_hus)
for roi in rois:
one_hot_roi_label = roi[sagittal_vals, :, range(len(sagittal_vals))]
one_hot_roi_label = zoom(one_hot_roi_label, (zoom_factor, 1), order=1).round()
one_hot_sag_label = np.concatenate(
(
one_hot_sag_label,
one_hot_roi_label.reshape(
(one_hot_roi_label.shape[0], one_hot_roi_label.shape[1], 1)
),
),
axis=2,
)
coronal_image = mvs[:, coronal_vals, range(len(coronal_vals))]
coronal_label = seg[:, coronal_vals, range(len(coronal_vals))]
coronal_image = zoom(coronal_image, (1, zoom_factor), order=3)
coronal_label = zoom(coronal_label, (1, zoom_factor), order=1).round()
# coronal_image = zoom(coronal_image, (zoom_factor, 1), order=3)
# coronal_label = zoom(coronal_label, (zoom_factor, 1), order=0).astype(int)
one_hot_cor_label = to_one_hot(coronal_label, model_type, spine_hus)
for roi in rois:
one_hot_roi_label = roi[:, coronal_vals, range(len(coronal_vals))]
one_hot_roi_label = zoom(one_hot_roi_label, (1, zoom_factor), order=1).round()
one_hot_cor_label = np.concatenate(
(
one_hot_cor_label,
one_hot_roi_label.reshape(
(one_hot_roi_label.shape[0], one_hot_roi_label.shape[1], 1)
),
),
axis=2,
)
# flip both axes of coronal image
sagittal_image = np.flip(sagittal_image, axis=0)
sagittal_image = np.flip(sagittal_image, axis=1)
# flip both axes of coronal label
one_hot_sag_label = np.flip(one_hot_sag_label, axis=0)
one_hot_sag_label = np.flip(one_hot_sag_label, axis=1)
coronal_image = np.transpose(coronal_image)
one_hot_cor_label = np.transpose(one_hot_cor_label, (1, 0, 2))
# flip both axes of sagittal image
coronal_image = np.flip(coronal_image, axis=0)
coronal_image = np.flip(coronal_image, axis=1)
# flip both axes of sagittal label
one_hot_cor_label = np.flip(one_hot_cor_label, axis=0)
one_hot_cor_label = np.flip(one_hot_cor_label, axis=1)
if format == "png":
sagittal_name = "spine_sagittal.png"
coronal_name = "spine_coronal.png"
elif format == "dcm":
sagittal_name = "spine_sagittal.dcm"
coronal_name = "spine_coronal.dcm"
else:
raise ValueError("Format must be either png or dcm")
img_sagittal = spine_visualization.spine_binary_segmentation_overlay(
sagittal_image,
one_hot_sag_label,
output_dir,
sagittal_name,
spine_hus=spine_hus,
seg_hus=seg_hus,
model_type=model_type,
pixel_spacing=pixel_spacing,
)
img_coronal = spine_visualization.spine_binary_segmentation_overlay(
coronal_image,
one_hot_cor_label,
output_dir,
coronal_name,
spine_hus=spine_hus,
seg_hus=seg_hus,
model_type=model_type,
pixel_spacing=pixel_spacing,
)
return img_sagittal, img_coronal
def curved_planar_reformation(mvs, centroids):
centroids = sorted(centroids, key=lambda x: x[2])
centroids = [(int(x[0]), int(x[1]), int(x[2])) for x in centroids]
sagittal_centroids = [centroids[i][0] for i in range(0, len(centroids))]
coronal_centroids = [centroids[i][1] for i in range(0, len(centroids))]
axial_centroids = [centroids[i][2] for i in range(0, len(centroids))]
sagittal_vals = [sagittal_centroids[0]] * axial_centroids[0]
coronal_vals = [coronal_centroids[0]] * axial_centroids[0]
for i in range(1, len(axial_centroids)):
num = axial_centroids[i] - axial_centroids[i - 1]
interp = list(
np.linspace(sagittal_centroids[i - 1], sagittal_centroids[i], num=num)
)
sagittal_vals.extend(interp)
interp = list(
np.linspace(coronal_centroids[i - 1], coronal_centroids[i], num=num)
)
coronal_vals.extend(interp)
sagittal_vals.extend([sagittal_centroids[-1]] * (mvs.shape[2] - len(sagittal_vals)))
coronal_vals.extend([coronal_centroids[-1]] * (mvs.shape[2] - len(coronal_vals)))
sagittal_vals = np.array(sagittal_vals)
coronal_vals = np.array(coronal_vals)
sagittal_vals = sagittal_vals.astype(int)
coronal_vals = coronal_vals.astype(int)
return (sagittal_vals, coronal_vals)
'''
def compare_ts_stanford_centroids(labels_path, pred_centroids):
"""Compare the centroids of the Stanford dataset with the centroids of the TS dataset.
Args:
labels_path (str): Path to the Stanford dataset labels.
"""
t12_diff = []
l1_diff = []
l2_diff = []
l3_diff = []
l4_diff = []
l5_diff = []
num_skipped = 0
labels = glob(labels_path + "/*")
for label_path in labels:
# modify label_path to give pred_path
pred_path = label_path.replace("labelsTs", "predTs_TS")
print(label_path.split("/")[-1])
label_nib = nib.load(label_path)
label = label_nib.get_fdata()
spacing = label_nib.header.get_zooms()[2]
pred_nib = nib.load(pred_path)
pred = pred_nib.get_fdata()
if True:
pred[pred == 18] = 6
pred[pred == 19] = 5
pred[pred == 20] = 4
pred[pred == 21] = 3
pred[pred == 22] = 2
pred[pred == 23] = 1
for label_idx in range(1, 7):
label_level = label == label_idx
indexes = np.array(range(label.shape[2]))
sums = np.sum(label_level, axis=(0, 1))
normalized_sums = sums / np.sum(sums)
label_centroid = np.sum(indexes * normalized_sums)
print(f"Centroid for label {label_idx}: {label_centroid}")
if False:
try:
pred_centroid = pred_centroids[6 - label_idx]
except Exception:
# Change this part
print("Something wrong with pred_centroids, skipping!")
num_skipped += 1
break
# if revert_to_original:
if True:
pred_level = pred == label_idx
sums = np.sum(pred_level, axis=(0, 1))
indices = list(range(sums.shape[0]))
groupby_input = zip(indices, list(sums))
g = groupby(groupby_input, key=lambda x: x[1] > 0.0)
m = max([list(s) for v, s in g if v > 0], key=lambda x: np.sum(list(zip(*x))[1]))
res = list(zip(*m))
indexes = list(res[0])
sums = list(res[1])
normalized_sums = sums / np.sum(sums)
pred_centroid = np.sum(indexes * normalized_sums)
print(f"Centroid for prediction {label_idx}: {pred_centroid}")
diff = np.absolute(pred_centroid - label_centroid) * spacing
if label_idx == 1:
t12_diff.append(diff)
elif label_idx == 2:
l1_diff.append(diff)
elif label_idx == 3:
l2_diff.append(diff)
elif label_idx == 4:
l3_diff.append(diff)
elif label_idx == 5:
l4_diff.append(diff)
elif label_idx == 6:
l5_diff.append(diff)
print(f"Skipped {num_skipped}")
print("The final mean differences in mm:")
print(
np.mean(t12_diff),
np.mean(l1_diff),
np.mean(l2_diff),
np.mean(l3_diff),
np.mean(l4_diff),
np.mean(l5_diff),
)
print("The final median differences in mm:")
print(
np.median(t12_diff),
np.median(l1_diff),
np.median(l2_diff),
np.median(l3_diff),
np.median(l4_diff),
np.median(l5_diff),
)
def compare_ts_stanford_roi_hus(image_path):
"""Compare the HU values of the Stanford dataset with the HU values of the TS dataset.
image_path (str): Path to the Stanford dataset images.
"""
img_paths = glob(image_path + "/*")
differences = np.zeros((40, 6))
ground_truth = np.zeros((40, 6))
for i, img_path in enumerate(img_paths):
print(f"Image number {i + 1}")
image_path_no_0000 = re.sub(r"_0000", "", img_path)
ts_seg_path = image_path_no_0000.replace("imagesTs", "predTs_TS")
stanford_seg_path = image_path_no_0000.replace("imagesTs", "labelsTs")
img = nib.load(img_path).get_fdata()
img = np.swapaxes(img, 0, 1)
ts_seg = nib.load(ts_seg_path).get_fdata()
ts_seg = np.swapaxes(ts_seg, 0, 1)
stanford_seg = nib.load(stanford_seg_path).get_fdata()
stanford_seg = np.swapaxes(stanford_seg, 0, 1)
ts_model_type = Models.model_from_name("ts_spine")
(spine_hus_ts, rois, centroids_3d) = compute_rois(ts_seg, img, 1, 0, ts_model_type)
stanford_model_type = Models.model_from_name("stanford_spine_v0.0.1")
(spine_hus_stanford, rois, centroids_3d) = compute_rois(
stanford_seg, img, 1, 0, stanford_model_type
)
difference_vals = np.abs(np.array(spine_hus_ts) - np.array(spine_hus_stanford))
print(f"Differences {difference_vals}\n")
differences[i, :] = difference_vals
ground_truth[i, :] = spine_hus_stanford
print("\n")
# compute average percent change from ground truth
percent_change = np.divide(differences, ground_truth) * 100
average_percent_change = np.mean(percent_change, axis=0)
median_percent_change = np.median(percent_change, axis=0)
# print average percent change
print("Average percent change from ground truth:")
print(average_percent_change)
print("Median percent change from ground truth:")
print(median_percent_change)
# print average difference
average_difference = np.mean(differences, axis=0)
median_difference = np.median(differences, axis=0)
print("Average difference from ground truth:")
print(average_difference)
print("Median difference from ground truth:")
print(median_difference)
def process_post_hoc(pred_path):
"""Apply post-hoc heuristics for improving Stanford spine model vertical centroid predictions.
Args:
pred_path (str): Path to the prediction.
"""
pred_nib = nib.load(pred_path)
pred = pred_nib.get_fdata()
pred_bodies = np.logical_and(pred >= 1, pred <= 6)
pred_bodies = pred_bodies.astype(np.int64)
labels_out, N = cc3d.connected_components(pred_bodies, return_N=True, connectivity=6)
stats = cc3d.statistics(labels_out)
print(stats)
labels_out_list = []
voxel_counts_list = list(stats["voxel_counts"])
for idx_lab in range(1, N + 2):
labels_out_list.append(labels_out == idx_lab)
centroids_list = list(stats["centroids"][:, 2])
labels = []
centroids = []
voxels = []
for idx, count in enumerate(voxel_counts_list):
if count > 10000:
labels.append(labels_out_list[idx])
centroids.append(centroids_list[idx])
voxels.append(count)
top_comps = [
(counts0, labels0, centroids0)
for counts0, labels0, centroids0 in sorted(zip(voxels, labels, centroids), reverse=True)
]
top_comps = top_comps[1:7]
# ====== Check whether the connected components are fusing vertebral bodies ======
revert_to_original = False
volumes = list(zip(*top_comps))[0]
if volumes[0] > 1.5 * volumes[1]:
revert_to_original = True
print("Reverting to original...")
labels = list(zip(*top_comps))[1]
centroids = list(zip(*top_comps))[2]
top_comps = zip(centroids, labels)
pred_centroids = [x for x, _ in sorted(top_comps)]
for label_idx in range(1, 7):
if not revert_to_original:
try:
pred_centroid = pred_centroids[6 - label_idx]
except:
# Change this part
print(
"Post processing failure, probably < 6 predicted bodies. Reverting to original labels."
)
revert_to_original = True
if revert_to_original:
pred_level = pred == label_idx
sums = np.sum(pred_level, axis=(0, 1))
indices = list(range(sums.shape[0]))
groupby_input = zip(indices, list(sums))
# sys.exit()
g = groupby(groupby_input, key=lambda x: x[1] > 0.0)
m = max([list(s) for v, s in g if v > 0], key=lambda x: np.sum(list(zip(*x))[1]))
# sys.exit()
# m = max([list(s) for v, s in g], key=lambda np.sum)
res = list(zip(*m))
indexes = list(res[0])
sums = list(res[1])
normalized_sums = sums / np.sum(sums)
pred_centroid = np.sum(indexes * normalized_sums)
print(f"Centroid for prediction {label_idx}: {pred_centroid}")
'''
|