File size: 4,527 Bytes
4a6e29c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from statistics import mode
from cProfile import label
from joblib import load

import matplotlib.pyplot as plt
import gradio as gr
import numpy as np

def getdata(Age,Sex,CP,Trtbps,Chol,Fbs,Restecg,Thalachh,Oldpeak,Slp,Caa,Thall,Exng):

    if Sex == "Male":
        Sex = 1
    else: 
        Sex = 0

    if CP == "Typical Angina":
        CP = 0
    elif CP == "Atypical Angina":
        CP = 1
    elif CP == "Non-anginal Pain":
        CP = 2
    else: 
        CP = 3

    if Fbs == "True":
        Fbs = 1
    else: 
        Fbs = 0

    if Restecg == "Normal":
        Restecg = 0
    elif Restecg == "ST-T wave normality":
        Restecg = 1
    else: 
        Restecg = 2

    if Exng == "Yes":
        Exng = 1
    else: 
        Exng = 0

    a = [Age,Sex,CP,Trtbps,Chol,Fbs,Restecg,Thalachh,Exng,Oldpeak,Slp,Caa,Thall]
    arr = np.array([a])

    return arr

def getfig(X_test):
    X_pca = load('X_pca.data')
    y = load('y.data')

    pca = load('pca.dim')
    u_pca  = pca.transform(X_test)

    fig = plt.figure(figsize=(5,4))

    plt.scatter(X_pca[:, 0], X_pca[:, 1], c = y, cmap = plt.cm.Spectral, s =  10)
    plt.scatter(u_pca[:, 0], u_pca[:, 1], c = 'g', cmap = plt.cm.Spectral, s =  40)
    plt.title(f"PCA, Exp. Variance: {np.round(np.sum(pca.explained_variance_ratio_), 4)}")
    plt.xlabel("PC 1")
    plt.ylabel("PC 2")

    return fig

def greet(Age,Sex,CP,Trtbps,Chol,Fbs,Restecg,Thalachh,Oldpeak,Slp,Caa,Thall,Exng):
    
    X_test = getdata(Age,Sex,CP,Trtbps,Chol,Fbs,Restecg,Thalachh,Oldpeak,Slp,Caa,Thall,Exng)
    
    scaler = load('stdscaler.model') 
    x_std = scaler.transform(X_test)

    log_reg = load('log_reg.model') 
    y_lr  = log_reg.predict(x_std)
    
    kmeans = load('kmeans.model') 
    y_km  = kmeans.predict(x_std)

    tree = load('tree.model') 
    y_tree  = tree.predict(x_std)

    nb = load('nb.model') 
    y_bayes  = nb.predict(X_test)

    forest = load('forest.model') 
    y_forest  = forest.predict(X_test)

    r = [y_lr[0], y_km[0], y_tree[0], y_bayes[0], y_forest[0]]

    f = mode(r)

    if f == 0:
        x = "You have less chance of heart attack"
    else:
        x = "You have more chance of heart attack"

    fig = load('dime.fig')

    fig2 = getfig(X_test)

    return x, fig, fig2


interface = gr.Interface(
    title = "HeartAttack prediction - UMG <br> Project Coeur ❤",
    description = "<h3>The idea is to classify between 0 = less chance of heart attack and 1 = more chance of heart attack, according to the data provided by the user.</h3>"+
    "<b>Models:</b> Logistic Regression, K-means, Decision Trees, Naive Bayes and Random Forest"+
    "<br><b>Metrics:</b> Accuracy: 0.82, Precision: 0.775, Recall: 0.939, F1 Score: 0.849 <br>  <br><b>Please provide the requested data:</b>",
    article='Step-by-step on GitHub <a href="https://github.com/Adrian8aS/Machine-Learning-App-Gradio/blob/21246d9ba87859e9068369b89d48b4c6ee13dfe5/Proyecto%20integrador.ipynb"> notebook </a> '+
    '<br>Dashboard of our train data <a href="https://1drv.ms/x/s!At7E16oDTBiKktUagvJHHpF5CCoITA?e=fOLjUq"> here! </a> '+
    '<br>Privacy Policy <a href="https://raw.githubusercontent.com/rulasvrdz/DataMining/main/Texto.txt"> here! </a> '+
    "<br><br> ~ Project Coeur",
    allow_flagging = "never",
    fn = greet, 
    inputs = [
        gr.Number(label="Age of the patient"),
        gr.Radio(["Male", "Female"], label="Sex of the patient"),
        gr.Radio(["Typical Angina", "Atypical Angina", "Non-anginal Pain", "Asymptomatic"], label="Chest pain type"),
        gr.Number(label="Resting blood pressure (in mm Hg)"),
        gr.Number(label="Cholestoral in mg/dl fetched via BMI sensor"),
        gr.Radio(["True", "False"], label="Fasting blood sugar > 120 mg/dl"),
        gr.Radio(["Normal", "ST-T wave normality", "Left ventricular hypertrophy"], label="Resting electrocardiographic results"),
        gr.Number(label="Maximum heart rate achieved"),
        gr.Number(label="Previous peak"),
        gr.Radio([0, 1, 2], label="Slope"),
        gr.Radio([0, 1, 2, 3, 4], label="Number of major vessels"),
        gr.Radio([0, 1, 2, 3], label="Thalium Stress Test result"),
        gr.Radio(["Yes", "No"], label="Exercise induced angina")
    ],
    outputs = [gr.Text(label="Prediction"), 'plot', 'plot'],
    examples = [[41,"Female","Typical Angina",130,204,"False","Normal",172,1.4,2,0,2,"No"],
                [45,"Male","Non-anginal Pain",110,264,"False","ST-T wave normality",132,0.2,1,0,3,"No"]]
)

interface.launch(share = False)