File size: 6,164 Bytes
5fb6640
dc96a4b
cd806c1
 
f93ef66
cd806c1
 
 
 
48e1cc8
5fb6640
cd806c1
 
5bf270c
 
 
 
 
 
 
cd806c1
5fb6640
 
cd806c1
5bf270c
 
 
 
 
 
 
 
 
 
 
cd806c1
5fb6640
 
cd806c1
5bf270c
 
 
 
 
 
cd806c1
082b45c
dc96a4b
5bf270c
 
 
 
d33c6e8
 
 
 
 
6f67feb
d33c6e8
 
 
5bf270c
 
 
cd806c1
 
5bf270c
cd806c1
5bf270c
 
 
 
 
 
 
 
 
 
 
cd806c1
 
dc96a4b
5bf270c
 
 
c51d774
 
 
 
5bf270c
 
 
685f404
5bf270c
 
a74bf92
9fe6076
 
5bf270c
 
 
 
685f404
5bf270c
a74bf92
9fe6076
 
5bf270c
 
 
 
cd806c1
 
 
 
5851d1b
 
 
 
5bf270c
 
 
cd806c1
5bf270c
 
 
 
 
 
 
 
 
cd806c1
 
 
dc96a4b
cd806c1
 
 
 
 
 
 
 
 
22449d9
5f56d74
 
 
cd806c1
 
 
 
 
 
5bf270c
 
 
 
 
 
7f10941
5bf270c
 
 
7f10941
5bf270c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd806c1
f4dfa92
cd806c1
5bf270c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub, ctransformers


def get_pdf_text(pdf_docs):
    text = ""
    try:
        for pdf in pdf_docs:
            pdf_reader = PdfReader(pdf)
            for page in pdf_reader.pages:
                text += page.extract_text()
    except Exception as e:
        st.error(f"Error reading PDFs: {e}")
    return text


def get_text_chunks(text):
    try:
        text_splitter = CharacterTextSplitter(
            separator="\n",
            chunk_size=800,
            chunk_overlap=0,
            length_function=len
        )
        chunks = text_splitter.split_text(text)
    except Exception as e:
        st.error(f"Error splitting text into chunks: {e}")
        chunks = []
    return chunks


def get_vectorstore(text_chunks):
    try:
        embeddings = HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
        vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    except Exception as e:
        st.error(f"Error creating vector store: {e}")
        vectorstore = None
    return vectorstore


def get_Hub_llm():
    try:
        llm = HuggingFaceHub(
            repo_id="HuggingFaceH4/zephyr-7b-beta",
            model_kwargs={
                "temperature": 0.1,
                "max_length": 2048,
                "top_k": 50,
                "num_return_sequences": 3,
                "task": "text-generation",
                "top_p": 0.95
            }
        )
    except Exception as e:
        st.error(f"Error loading Hub LLM: {e}")
        llm = None
    return llm


def get_local_llm():
    try:
        llm = ctransformers.CTransformers(
            model="C:/llama-2-7b-chat.ggmlv3.q4_0.bin",
            model_type="llama",
            max_new_tokens=1024,
            max_length=4096,
            temperature=0.1
        )
    except Exception as e:
        st.error(f"Error loading local LLM: {e}")
        llm = None
    return llm


def get_conversation_chain(vectorstore, llm):
    try:
        memory = ConversationBufferMemory(
            memory_key='chat_history',
            return_messages=True,
            input_key="question",
            output_key="answer")
        if vectorstore:
            conversation_chain = ConversationalRetrievalChain.from_llm(
                llm=llm,
                chain_type="stuff",
                verbose=True,
                retriever=vectorstore.as_retriever(search_kwargs={"k": 3, "search_type": "similarity"}),
                memory=memory,
                output_key='answer',
                return_source_documents=False
            )
        else:
            conversation_chain = ConversationalRetrievalChain.from_llm(
                llm=llm,
                chain_type="stuff",
                verbose=True,
                memory=memory,
                output_key='answer',
                return_source_documents=False
            )
    except Exception as e:
        st.error(f"Error creating conversation chain: {e}")
        conversation_chain = None
    return conversation_chain


def handle_userinput(user_question):
    if st.session_state.conversation is None:
        st.error("Conversation chain is not initialized.")
        return

    try:
        response = st.session_state.conversation({'question': user_question})
        st.session_state.chat_history = response['chat_history']

        for i, message in enumerate(st.session_state.chat_history):
            if i % 2 == 0:
                with st.chat_message("User"):
                    st.write(message.content)
            else:
                with st.chat_message("assistant"):
                    st.write(message.content)
    except Exception as e:
        st.error(f"Error handling user input: {e}")


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs",
                       page_icon=":books:")
    
    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs ")
    
    user_question = st.chat_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)
    with st.sidebar:
        st.subheader("Your documents")
        pdf_docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                try:
                    # get pdf text
                    raw_text = get_pdf_text(pdf_docs)
                
                    # get the text chunks
                    text_chunks = get_text_chunks(raw_text)

                    if not text_chunks:
                        st.error("No text found in the PDFs or text splitting failed.")
                        return

                    # create vector store
                    vectorstore = get_vectorstore(text_chunks)

                    if not vectorstore:
                        st.error("Failed to create vector store.")
                        return

                    # create llm
                    llm = get_Hub_llm()

                    if not llm:
                        st.error("Failed to load LLM.")
                        return

                    # create conversation chain
                    st.session_state.conversation = get_conversation_chain(vectorstore, llm)

                    if not st.session_state.conversation:
                        st.error("Failed to create conversation chain.")

                except Exception as e:
                    st.error(f"An error occurred during processing: {e}")


if __name__ == '__main__':
    main()