File size: 5,173 Bytes
47d6804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass


class MultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        # Ensure embedding dimension is divisible by number of heads
        assert config.emb_dim % config.num_head == 0

        self.n_head = config.num_head
        self.n_embd = config.emb_dim
        self.head_size = config.emb_dim // config.num_head

        # Separate projections for Q, K, V instead of a single projection
        self.q_proj = nn.Linear(config.emb_dim, config.emb_dim)
        self.k_proj = nn.Linear(config.emb_dim, config.emb_dim)
        self.v_proj = nn.Linear(config.emb_dim, config.emb_dim)
        self.out_proj = nn.Linear(config.emb_dim, config.emb_dim)

        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)

        # Causal mask
        self.register_buffer(
            "mask",
            torch.tril(torch.ones(config.block_size, config.block_size)).view(
                1, 1, config.block_size, config.block_size
            ),
        )

    def forward(self, x):
        B, T, C = x.size()  # batch, sequence length, embedding dim

        # Separate projections for Q, K, V
        q = self.q_proj(x)  # (B, T, C)
        k = self.k_proj(x)  # (B, T, C)
        v = self.v_proj(x)  # (B, T, C)

        # Reshape heads
        q = q.view(B, T, self.n_head, self.head_size).transpose(1, 2)  # (B, nh, T, hs)
        k = k.view(B, T, self.n_head, self.head_size).transpose(1, 2)  # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, self.head_size).transpose(1, 2)  # (B, nh, T, hs)

        # Compute attention scores
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))  # (B, nh, T, T)
        att = att.masked_fill(self.mask[:, :, :T, :T] == 0, float("-inf"))
        att = F.softmax(att, dim=-1)
        att = self.attn_dropout(att)

        # Apply attention to values
        y = att @ v  # (B, nh, T, hs)

        # Reshape and project output
        y = y.transpose(1, 2).contiguous().view(B, T, C)  # (B, T, C)
        y = self.out_proj(y)
        y = self.resid_dropout(y)

        return y


class FeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.emb_dim, 4 * config.emb_dim)
        self.c_proj = nn.Linear(4 * config.emb_dim, config.emb_dim)
        self.dropout = nn.Dropout(config.dropout)
        self.gelu = nn.GELU()

    def forward(self, x):
        x = self.gelu(self.c_fc(x))
        x = self.dropout(self.c_proj(x))
        return x


class TransformerBlock(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.emb_dim)
        self.ln_2 = nn.LayerNorm(config.emb_dim)
        self.attn = MultiHeadAttention(config)
        self.mlp = FeedForward(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(
            {
                "wte": nn.Embedding(config.vocab_size, config.emb_dim),
                "wpe": nn.Embedding(config.block_size, config.emb_dim),
                "drop": nn.Dropout(config.dropout),
                "h": nn.ModuleList(
                    [TransformerBlock(config) for _ in range(config.num_layer)]
                ),
                "ln_f": nn.LayerNorm(config.emb_dim),
            }
        )

        self.lm_head = nn.Linear(config.emb_dim, config.vocab_size, bias=False)

        # Initialize weights
        self.apply(self._init_weights)

        # Tie weights between embedding and final linear layer
        self.transformer.wte.weight = self.lm_head.weight

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
        elif isinstance(module, nn.LayerNorm):
            torch.nn.init.ones_(module.weight)
            torch.nn.init.zeros_(module.bias)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        assert (
            t <= self.config.block_size
        ), f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"

        # Get positions
        pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)  # (1, t)

        # Get embeddings
        tok_emb = self.transformer.wte(idx)  # (b, t, n_embd)
        pos_emb = self.transformer.wpe(pos)  # (1, t, n_embd)
        x = self.transformer.drop(tok_emb + pos_emb)

        # Apply transformer blocks
        for block in self.transformer.h:
            x = block(x)

        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)

        return logits