File size: 1,455 Bytes
4aa568e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f9ba4
4aa568e
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f9ba4
4aa568e
 
 
 
c9f9ba4
4aa568e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio as gr
from PIL import Image
import torch
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer

# Load model and processor
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Captioning function
def generate_caption(image):
    # Choose image from upload or webcam
    if image is None:
        return "No image provided."
    # Preprocess
    pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
    # Generate
    output_ids = model.generate(pixel_values, max_length=16, num_beams=4)
    caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
    return caption

# Build Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Image Captioning with Gradio")
    with gr.Row():
        upload_input = gr.Image(sources=["upload", "webcam", "clipboard"], type="pil", label="Upload Image")
    output_text = gr.Textbox(label="Caption", interactive=False)
    generate_btn = gr.Button("Generate Caption")
    generate_btn.click(
        fn=generate_caption,
        inputs=upload_input,
        outputs=output_text
    )

demo.launch()