File size: 22,010 Bytes
617d388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6734556
617d388
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import json
import os
import re
from abc import ABC, abstractmethod
from pathlib import Path

import gradio as gr
from PIL import Image

import fooocus_version
import modules.config
import modules.sdxl_styles
from modules.flags import MetadataScheme, Performance, Steps
from modules.flags import SAMPLERS, CIVITAI_NO_KARRAS
from modules.util import quote, unquote, extract_styles_from_prompt, is_json, get_file_from_folder_list, calculate_sha256

re_param_code = r'\s*(\w[\w \-/]+):\s*("(?:\\.|[^\\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_imagesize = re.compile(r"^(\d+)x(\d+)$")

hash_cache = {}


def load_parameter_button_click(raw_metadata: dict | str, is_generating: bool):
    loaded_parameter_dict = raw_metadata
    if isinstance(raw_metadata, str):
        loaded_parameter_dict = json.loads(raw_metadata)
    assert isinstance(loaded_parameter_dict, dict)

    results = [len(loaded_parameter_dict) > 0, 1]

    get_str('prompt', 'Prompt', loaded_parameter_dict, results)
    get_str('negative_prompt', 'Negative Prompt', loaded_parameter_dict, results)
    get_list('styles', 'Styles', loaded_parameter_dict, results)
    get_str('performance', 'Performance', loaded_parameter_dict, results)
    get_steps('steps', 'Steps', loaded_parameter_dict, results)
    get_float('overwrite_switch', 'Overwrite Switch', loaded_parameter_dict, results)
    get_resolution('resolution', 'Resolution', loaded_parameter_dict, results)
    get_float('guidance_scale', 'Guidance Scale', loaded_parameter_dict, results)
    get_float('sharpness', 'Sharpness', loaded_parameter_dict, results)
    get_adm_guidance('adm_guidance', 'ADM Guidance', loaded_parameter_dict, results)
    get_str('refiner_swap_method', 'Refiner Swap Method', loaded_parameter_dict, results)
    get_float('adaptive_cfg', 'CFG Mimicking from TSNR', loaded_parameter_dict, results)
    get_str('base_model', 'Base Model', loaded_parameter_dict, results)
    get_str('refiner_model', 'Refiner Model', loaded_parameter_dict, results)
    get_float('refiner_switch', 'Refiner Switch', loaded_parameter_dict, results)
    get_str('sampler', 'Sampler', loaded_parameter_dict, results)
    get_str('scheduler', 'Scheduler', loaded_parameter_dict, results)
    get_seed('seed', 'Seed', loaded_parameter_dict, results)

    if is_generating:
        results.append(gr.update())
    else:
        results.append(gr.update(visible=True))

    results.append(gr.update(visible=False))

    get_freeu('freeu', 'FreeU', loaded_parameter_dict, results)

    for i in range(modules.config.default_max_lora_number):
        get_lora(f'lora_combined_{i + 1}', f'LoRA {i + 1}', loaded_parameter_dict, results)

    return results


def get_str(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        assert isinstance(h, str)
        results.append(h)
    except:
        results.append(gr.update())


def get_list(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        h = eval(h)
        assert isinstance(h, list)
        results.append(h)
    except:
        results.append(gr.update())


def get_float(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        assert h is not None
        h = float(h)
        results.append(h)
    except:
        results.append(gr.update())


def get_steps(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        assert h is not None
        h = int(h)
        # if not in steps or in steps and performance is not the same
        if h not in iter(Steps) or Steps(h).name.casefold() != source_dict.get('performance', '').replace(' ', '_').casefold():
            results.append(h)
            return
        results.append(-1)
    except:
        results.append(-1)


def get_resolution(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        width, height = eval(h)
        formatted = modules.config.add_ratio(f'{width}*{height}')
        if formatted in modules.config.available_aspect_ratios:
            results.append(formatted)
            results.append(-1)
            results.append(-1)
        else:
            results.append(gr.update())
            results.append(int(width))
            results.append(int(height))
    except:
        results.append(gr.update())
        results.append(gr.update())
        results.append(gr.update())


def get_seed(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        assert h is not None
        h = int(h)
        results.append(False)
        results.append(h)
    except:
        results.append(gr.update())
        results.append(gr.update())


def get_adm_guidance(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        p, n, e = eval(h)
        results.append(float(p))
        results.append(float(n))
        results.append(float(e))
    except:
        results.append(gr.update())
        results.append(gr.update())
        results.append(gr.update())


def get_freeu(key: str, fallback: str | None, source_dict: dict, results: list, default=None):
    try:
        h = source_dict.get(key, source_dict.get(fallback, default))
        b1, b2, s1, s2 = eval(h)
        results.append(True)
        results.append(float(b1))
        results.append(float(b2))
        results.append(float(s1))
        results.append(float(s2))
    except:
        results.append(False)
        results.append(gr.update())
        results.append(gr.update())
        results.append(gr.update())
        results.append(gr.update())


def get_lora(key: str, fallback: str | None, source_dict: dict, results: list):
    try:
        n, w = source_dict.get(key, source_dict.get(fallback)).split(' : ')
        w = float(w)
        results.append(True)
        results.append(n)
        results.append(w)
    except:
        results.append(True)
        results.append('None')
        results.append(1)


def get_sha256(filepath):
    global hash_cache
    if filepath not in hash_cache:
        hash_cache[filepath] = calculate_sha256(filepath)

    return hash_cache[filepath]


def parse_meta_from_preset(preset_content):
    assert isinstance(preset_content, dict)
    preset_prepared = {}
    items = preset_content

    for settings_key, meta_key in modules.config.possible_preset_keys.items():
        if settings_key == "default_loras":
            loras = getattr(modules.config, settings_key)
            if settings_key in items:
                loras = items[settings_key]
            for index, lora in enumerate(loras[:5]):
                preset_prepared[f'lora_combined_{index + 1}'] = ' : '.join(map(str, lora))
        elif settings_key == "default_aspect_ratio":
            if settings_key in items and items[settings_key] is not None:
                default_aspect_ratio = items[settings_key]
                width, height = default_aspect_ratio.split('*')
            else:
                default_aspect_ratio = getattr(modules.config, settings_key)
                width, height = default_aspect_ratio.split('×')
                height = height[:height.index(" ")]
            preset_prepared[meta_key] = (width, height)
        else:
            preset_prepared[meta_key] = items[settings_key] if settings_key in items and items[
                settings_key] is not None else getattr(modules.config, settings_key)

        if settings_key == "default_styles" or settings_key == "default_aspect_ratio":
            preset_prepared[meta_key] = str(preset_prepared[meta_key])

    return preset_prepared


class MetadataParser(ABC):
    def __init__(self):
        self.raw_prompt: str = ''
        self.full_prompt: str = ''
        self.raw_negative_prompt: str = ''
        self.full_negative_prompt: str = ''
        self.steps: int = 30
        self.base_model_name: str = ''
        self.base_model_hash: str = ''
        self.refiner_model_name: str = ''
        self.refiner_model_hash: str = ''
        self.loras: list = []

    @abstractmethod
    def get_scheme(self) -> MetadataScheme:
        raise NotImplementedError

    @abstractmethod
    def parse_json(self, metadata: dict | str) -> dict:
        raise NotImplementedError

    @abstractmethod
    def parse_string(self, metadata: dict) -> str:
        raise NotImplementedError

    def set_data(self, raw_prompt, full_prompt, raw_negative_prompt, full_negative_prompt, steps, base_model_name,
                 refiner_model_name, loras):
        self.raw_prompt = raw_prompt
        self.full_prompt = full_prompt
        self.raw_negative_prompt = raw_negative_prompt
        self.full_negative_prompt = full_negative_prompt
        self.steps = steps
        self.base_model_name = Path(base_model_name).stem

        base_model_path = get_file_from_folder_list(base_model_name, modules.config.paths_checkpoints)
        self.base_model_hash = get_sha256(base_model_path)

        if refiner_model_name not in ['', 'None']:
            self.refiner_model_name = Path(refiner_model_name).stem
            refiner_model_path = get_file_from_folder_list(refiner_model_name, modules.config.paths_checkpoints)
            self.refiner_model_hash = get_sha256(refiner_model_path)

        self.loras = []
        for (lora_name, lora_weight) in loras:
            if lora_name != 'None':
                lora_path = get_file_from_folder_list(lora_name, modules.config.paths_loras)
                lora_hash = get_sha256(lora_path)
                self.loras.append((Path(lora_name).stem, lora_weight, lora_hash))


class A1111MetadataParser(MetadataParser):
    def get_scheme(self) -> MetadataScheme:
        return MetadataScheme.A1111

    fooocus_to_a1111 = {
        'raw_prompt': 'Raw prompt',
        'raw_negative_prompt': 'Raw negative prompt',
        'negative_prompt': 'Negative prompt',
        'styles': 'Styles',
        'performance': 'Performance',
        'steps': 'Steps',
        'sampler': 'Sampler',
        'scheduler': 'Scheduler',
        'guidance_scale': 'CFG scale',
        'seed': 'Seed',
        'resolution': 'Size',
        'sharpness': 'Sharpness',
        'adm_guidance': 'ADM Guidance',
        'refiner_swap_method': 'Refiner Swap Method',
        'adaptive_cfg': 'Adaptive CFG',
        'overwrite_switch': 'Overwrite Switch',
        'freeu': 'FreeU',
        'base_model': 'Model',
        'base_model_hash': 'Model hash',
        'refiner_model': 'Refiner',
        'refiner_model_hash': 'Refiner hash',
        'lora_hashes': 'Lora hashes',
        'lora_weights': 'Lora weights',
        'created_by': 'User',
        'version': 'Version'
    }

    def parse_json(self, metadata: str) -> dict:
        metadata_prompt = ''
        metadata_negative_prompt = ''

        done_with_prompt = False

        *lines, lastline = metadata.strip().split("\n")
        if len(re_param.findall(lastline)) < 3:
            lines.append(lastline)
            lastline = ''

        for line in lines:
            line = line.strip()
            if line.startswith(f"{self.fooocus_to_a1111['negative_prompt']}:"):
                done_with_prompt = True
                line = line[len(f"{self.fooocus_to_a1111['negative_prompt']}:"):].strip()
            if done_with_prompt:
                metadata_negative_prompt += ('' if metadata_negative_prompt == '' else "\n") + line
            else:
                metadata_prompt += ('' if metadata_prompt == '' else "\n") + line

        found_styles, prompt, negative_prompt = extract_styles_from_prompt(metadata_prompt, metadata_negative_prompt)

        data = {
            'prompt': prompt,
            'negative_prompt': negative_prompt
        }

        for k, v in re_param.findall(lastline):
            try:
                if v != '' and v[0] == '"' and v[-1] == '"':
                    v = unquote(v)

                m = re_imagesize.match(v)
                if m is not None:
                    data['resolution'] = str((m.group(1), m.group(2)))
                else:
                    data[list(self.fooocus_to_a1111.keys())[list(self.fooocus_to_a1111.values()).index(k)]] = v
            except Exception:
                print(f"Error parsing \"{k}: {v}\"")

        # workaround for multiline prompts
        if 'raw_prompt' in data:
            data['prompt'] = data['raw_prompt']
            raw_prompt = data['raw_prompt'].replace("\n", ', ')
            if metadata_prompt != raw_prompt and modules.sdxl_styles.fooocus_expansion not in found_styles:
                found_styles.append(modules.sdxl_styles.fooocus_expansion)

        if 'raw_negative_prompt' in data:
            data['negative_prompt'] = data['raw_negative_prompt']

        data['styles'] = str(found_styles)

        # try to load performance based on steps, fallback for direct A1111 imports
        if 'steps' in data and 'performance' not in data:
            try:
                data['performance'] = Performance[Steps(int(data['steps'])).name].value
            except ValueError | KeyError:
                pass

        if 'sampler' in data:
            data['sampler'] = data['sampler'].replace(' Karras', '')
            # get key
            for k, v in SAMPLERS.items():
                if v == data['sampler']:
                    data['sampler'] = k
                    break

        for key in ['base_model', 'refiner_model']:
            if key in data:
                for filename in modules.config.model_filenames:
                    path = Path(filename)
                    if data[key] == path.stem:
                        data[key] = filename
                        break

        if 'lora_hashes' in data:
            lora_filenames = modules.config.lora_filenames.copy()
            if modules.config.sdxl_lcm_lora in lora_filenames:
                lora_filenames.remove(modules.config.sdxl_lcm_lora)
            for li, lora in enumerate(data['lora_hashes'].split(', ')):
                lora_name, lora_hash, lora_weight = lora.split(': ')
                for filename in lora_filenames:
                    path = Path(filename)
                    if lora_name == path.stem:
                        data[f'lora_combined_{li + 1}'] = f'{filename} : {lora_weight}'
                        break

        return data

    def parse_string(self, metadata: dict) -> str:
        data = {k: v for _, k, v in metadata}

        width, height = eval(data['resolution'])

        sampler = data['sampler']
        scheduler = data['scheduler']
        if sampler in SAMPLERS and SAMPLERS[sampler] != '':
            sampler = SAMPLERS[sampler]
            if sampler not in CIVITAI_NO_KARRAS and scheduler == 'karras':
                sampler += f' Karras'

        generation_params = {
            self.fooocus_to_a1111['steps']: self.steps,
            self.fooocus_to_a1111['sampler']: sampler,
            self.fooocus_to_a1111['seed']: data['seed'],
            self.fooocus_to_a1111['resolution']: f'{width}x{height}',
            self.fooocus_to_a1111['guidance_scale']: data['guidance_scale'],
            self.fooocus_to_a1111['sharpness']: data['sharpness'],
            self.fooocus_to_a1111['adm_guidance']: data['adm_guidance'],
            self.fooocus_to_a1111['base_model']: Path(data['base_model']).stem,
            self.fooocus_to_a1111['base_model_hash']: self.base_model_hash,

            self.fooocus_to_a1111['performance']: data['performance'],
            self.fooocus_to_a1111['scheduler']: scheduler,
            # workaround for multiline prompts
            self.fooocus_to_a1111['raw_prompt']: self.raw_prompt,
            self.fooocus_to_a1111['raw_negative_prompt']: self.raw_negative_prompt,
        }

        if self.refiner_model_name not in ['', 'None']:
            generation_params |= {
                self.fooocus_to_a1111['refiner_model']: self.refiner_model_name,
                self.fooocus_to_a1111['refiner_model_hash']: self.refiner_model_hash
            }

        for key in ['adaptive_cfg', 'overwrite_switch', 'refiner_swap_method', 'freeu']:
            if key in data:
                generation_params[self.fooocus_to_a1111[key]] = data[key]

        lora_hashes = []
        for index, (lora_name, lora_weight, lora_hash) in enumerate(self.loras):
            # workaround for Fooocus not knowing LoRA name in LoRA metadata
            lora_hashes.append(f'{lora_name}: {lora_hash}: {lora_weight}')
        lora_hashes_string = ', '.join(lora_hashes)

        generation_params |= {
            self.fooocus_to_a1111['lora_hashes']: lora_hashes_string,
            self.fooocus_to_a1111['version']: data['version']
        }

        if modules.config.metadata_created_by != '':
            generation_params[self.fooocus_to_a1111['created_by']] = modules.config.metadata_created_by

        generation_params_text = ", ".join(
            [k if k == v else f'{k}: {quote(v)}' for k, v in generation_params.items() if
             v is not None])
        positive_prompt_resolved = ', '.join(self.full_prompt)
        negative_prompt_resolved = ', '.join(self.full_negative_prompt)
        negative_prompt_text = f"\nNegative prompt: {negative_prompt_resolved}" if negative_prompt_resolved else ""
        return f"{positive_prompt_resolved}{negative_prompt_text}\n{generation_params_text}".strip()


class FooocusMetadataParser(MetadataParser):
    def get_scheme(self) -> MetadataScheme:
        return MetadataScheme.FOOOCUS

    def parse_json(self, metadata: dict) -> dict:
        model_filenames = modules.config.model_filenames.copy()
        lora_filenames = modules.config.lora_filenames.copy()
        if modules.config.sdxl_lcm_lora in lora_filenames:
            lora_filenames.remove(modules.config.sdxl_lcm_lora)

        for key, value in metadata.items():
            if value in ['', 'None']:
                continue
            if key in ['base_model', 'refiner_model']:
                metadata[key] = self.replace_value_with_filename(key, value, model_filenames)
            elif key.startswith('lora_combined_'):
                metadata[key] = self.replace_value_with_filename(key, value, lora_filenames)
            else:
                continue

        return metadata

    def parse_string(self, metadata: list) -> str:
        for li, (label, key, value) in enumerate(metadata):
            # remove model folder paths from metadata
            if key.startswith('lora_combined_'):
                name, weight = value.split(' : ')
                name = Path(name).stem
                value = f'{name} : {weight}'
                metadata[li] = (label, key, value)

        res = {k: v for _, k, v in metadata}

        res['full_prompt'] = self.full_prompt
        res['full_negative_prompt'] = self.full_negative_prompt
        res['steps'] = self.steps
        res['base_model'] = self.base_model_name
        res['base_model_hash'] = self.base_model_hash

        if self.refiner_model_name not in ['', 'None']:
            res['refiner_model'] = self.refiner_model_name
            res['refiner_model_hash'] = self.refiner_model_hash

        res['loras'] = self.loras

        if modules.config.metadata_created_by != '':
            res['created_by'] = modules.config.metadata_created_by

        return json.dumps(dict(sorted(res.items())))

    @staticmethod
    def replace_value_with_filename(key, value, filenames):
        for filename in filenames:
            path = Path(filename)
            if key.startswith('lora_combined_'):
                name, weight = value.split(' : ')
                if name == path.stem:
                    return f'{filename} : {weight}'
            elif value == path.stem:
                return filename


def get_metadata_parser(metadata_scheme: MetadataScheme) -> MetadataParser:
    match metadata_scheme:
        case MetadataScheme.FOOOCUS:
            return FooocusMetadataParser()
        case MetadataScheme.A1111:
            return A1111MetadataParser()
        case _:
            raise NotImplementedError


def read_info_from_image(filepath) -> tuple[str | None, MetadataScheme | None]:
    with Image.open(filepath) as image:
        items = (image.info or {}).copy()

    parameters = items.pop('parameters', None)
    metadata_scheme = items.pop('fooocus_scheme', None)
    exif = items.pop('exif', None)

    if parameters is not None and is_json(parameters):
        parameters = json.loads(parameters)
    elif exif is not None:
        exif = image.getexif()
        # 0x9286 = UserComment
        parameters = exif.get(0x9286, None)
        # 0x927C = MakerNote
        metadata_scheme = exif.get(0x927C, None)

        if is_json(parameters):
            parameters = json.loads(parameters)

    try:
        metadata_scheme = MetadataScheme(metadata_scheme)
    except ValueError:
        metadata_scheme = None

        # broad fallback
        if isinstance(parameters, dict):
            metadata_scheme = MetadataScheme.FOOOCUS

        if isinstance(parameters, str):
            metadata_scheme = MetadataScheme.A1111

    return parameters, metadata_scheme


def get_exif(metadata: str | None, metadata_scheme: str):
    exif = Image.Exif()
    # tags see see https://github.com/python-pillow/Pillow/blob/9.2.x/src/PIL/ExifTags.py
    # 0x9286 = UserComment
    exif[0x9286] = metadata
    # 0x0131 = Software
    exif[0x0131] = 'AI Image'
    # 0x927C = MakerNote
    exif[0x927C] = metadata_scheme
    return exif