File size: 10,570 Bytes
548cd19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import functools
import math
import re
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from . import block as B


# Borrowed from https://github.com/rlaphoenix/VSGAN/blob/master/vsgan/archs/esrgan.py
# Which enhanced stuff that was already here
class RRDBNet(nn.Module):
    def __init__(
        self,
        state_dict,
        norm=None,
        act: str = "leakyrelu",
        upsampler: str = "upconv",
        mode: B.ConvMode = "CNA",
    ) -> None:
        """
        ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks.
        By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
        and Chen Change Loy.
        This is old-arch Residual in Residual Dense Block Network and is not
        the newest revision that's available at github.com/xinntao/ESRGAN.
        This is on purpose, the newest Network has severely limited the
        potential use of the Network with no benefits.
        This network supports model files from both new and old-arch.
        Args:
            norm: Normalization layer
            act: Activation layer
            upsampler: Upsample layer. upconv, pixel_shuffle
            mode: Convolution mode
        """
        super(RRDBNet, self).__init__()
        self.model_arch = "ESRGAN"
        self.sub_type = "SR"

        self.state = state_dict
        self.norm = norm
        self.act = act
        self.upsampler = upsampler
        self.mode = mode

        self.state_map = {
            # currently supports old, new, and newer RRDBNet arch models
            # ESRGAN, BSRGAN/RealSR, Real-ESRGAN
            "model.0.weight": ("conv_first.weight",),
            "model.0.bias": ("conv_first.bias",),
            "model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"),
            "model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"),
            r"model.1.sub.\1.RDB\2.conv\3.0.\4": (
                r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)",
                r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)",
            ),
        }
        if "params_ema" in self.state:
            self.state = self.state["params_ema"]
            # self.model_arch = "RealESRGAN"
        self.num_blocks = self.get_num_blocks()
        self.plus = any("conv1x1" in k for k in self.state.keys())
        if self.plus:
            self.model_arch = "ESRGAN+"

        self.state = self.new_to_old_arch(self.state)

        self.key_arr = list(self.state.keys())

        self.in_nc: int = self.state[self.key_arr[0]].shape[1]
        self.out_nc: int = self.state[self.key_arr[-1]].shape[0]

        self.scale: int = self.get_scale()
        self.num_filters: int = self.state[self.key_arr[0]].shape[0]

        c2x2 = False
        if self.state["model.0.weight"].shape[-2] == 2:
            c2x2 = True
            self.scale = round(math.sqrt(self.scale / 4))
            self.model_arch = "ESRGAN-2c2"

        self.supports_fp16 = True
        self.supports_bfp16 = True
        self.min_size_restriction = None

        # Detect if pixelunshuffle was used (Real-ESRGAN)
        if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in (
            self.in_nc / 4,
            self.in_nc / 16,
        ):
            self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc))
        else:
            self.shuffle_factor = None

        upsample_block = {
            "upconv": B.upconv_block,
            "pixel_shuffle": B.pixelshuffle_block,
        }.get(self.upsampler)
        if upsample_block is None:
            raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found")

        if self.scale == 3:
            upsample_blocks = upsample_block(
                in_nc=self.num_filters,
                out_nc=self.num_filters,
                upscale_factor=3,
                act_type=self.act,
                c2x2=c2x2,
            )
        else:
            upsample_blocks = [
                upsample_block(
                    in_nc=self.num_filters,
                    out_nc=self.num_filters,
                    act_type=self.act,
                    c2x2=c2x2,
                )
                for _ in range(int(math.log(self.scale, 2)))
            ]

        self.model = B.sequential(
            # fea conv
            B.conv_block(
                in_nc=self.in_nc,
                out_nc=self.num_filters,
                kernel_size=3,
                norm_type=None,
                act_type=None,
                c2x2=c2x2,
            ),
            B.ShortcutBlock(
                B.sequential(
                    # rrdb blocks
                    *[
                        B.RRDB(
                            nf=self.num_filters,
                            kernel_size=3,
                            gc=32,
                            stride=1,
                            bias=True,
                            pad_type="zero",
                            norm_type=self.norm,
                            act_type=self.act,
                            mode="CNA",
                            plus=self.plus,
                            c2x2=c2x2,
                        )
                        for _ in range(self.num_blocks)
                    ],
                    # lr conv
                    B.conv_block(
                        in_nc=self.num_filters,
                        out_nc=self.num_filters,
                        kernel_size=3,
                        norm_type=self.norm,
                        act_type=None,
                        mode=self.mode,
                        c2x2=c2x2,
                    ),
                )
            ),
            *upsample_blocks,
            # hr_conv0
            B.conv_block(
                in_nc=self.num_filters,
                out_nc=self.num_filters,
                kernel_size=3,
                norm_type=None,
                act_type=self.act,
                c2x2=c2x2,
            ),
            # hr_conv1
            B.conv_block(
                in_nc=self.num_filters,
                out_nc=self.out_nc,
                kernel_size=3,
                norm_type=None,
                act_type=None,
                c2x2=c2x2,
            ),
        )

        # Adjust these properties for calculations outside of the model
        if self.shuffle_factor:
            self.in_nc //= self.shuffle_factor**2
            self.scale //= self.shuffle_factor

        self.load_state_dict(self.state, strict=False)

    def new_to_old_arch(self, state):
        """Convert a new-arch model state dictionary to an old-arch dictionary."""
        if "params_ema" in state:
            state = state["params_ema"]

        if "conv_first.weight" not in state:
            # model is already old arch, this is a loose check, but should be sufficient
            return state

        # add nb to state keys
        for kind in ("weight", "bias"):
            self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[
                f"model.1.sub./NB/.{kind}"
            ]
            del self.state_map[f"model.1.sub./NB/.{kind}"]

        old_state = OrderedDict()
        for old_key, new_keys in self.state_map.items():
            for new_key in new_keys:
                if r"\1" in old_key:
                    for k, v in state.items():
                        sub = re.sub(new_key, old_key, k)
                        if sub != k:
                            old_state[sub] = v
                else:
                    if new_key in state:
                        old_state[old_key] = state[new_key]

        # upconv layers
        max_upconv = 0
        for key in state.keys():
            match = re.match(r"(upconv|conv_up)(\d)\.(weight|bias)", key)
            if match is not None:
                _, key_num, key_type = match.groups()
                old_state[f"model.{int(key_num) * 3}.{key_type}"] = state[key]
                max_upconv = max(max_upconv, int(key_num) * 3)

        # final layers
        for key in state.keys():
            if key in ("HRconv.weight", "conv_hr.weight"):
                old_state[f"model.{max_upconv + 2}.weight"] = state[key]
            elif key in ("HRconv.bias", "conv_hr.bias"):
                old_state[f"model.{max_upconv + 2}.bias"] = state[key]
            elif key in ("conv_last.weight",):
                old_state[f"model.{max_upconv + 4}.weight"] = state[key]
            elif key in ("conv_last.bias",):
                old_state[f"model.{max_upconv + 4}.bias"] = state[key]

        # Sort by first numeric value of each layer
        def compare(item1, item2):
            parts1 = item1.split(".")
            parts2 = item2.split(".")
            int1 = int(parts1[1])
            int2 = int(parts2[1])
            return int1 - int2

        sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare))

        # Rebuild the output dict in the right order
        out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys)

        return out_dict

    def get_scale(self, min_part: int = 6) -> int:
        n = 0
        for part in list(self.state):
            parts = part.split(".")[1:]
            if len(parts) == 2:
                part_num = int(parts[0])
                if part_num > min_part and parts[1] == "weight":
                    n += 1
        return 2**n

    def get_num_blocks(self) -> int:
        nbs = []
        state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + (
            r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)",
        )
        for state_key in state_keys:
            for k in self.state:
                m = re.search(state_key, k)
                if m:
                    nbs.append(int(m.group(1)))
            if nbs:
                break
        return max(*nbs) + 1

    def forward(self, x):
        if self.shuffle_factor:
            _, _, h, w = x.size()
            mod_pad_h = (
                self.shuffle_factor - h % self.shuffle_factor
            ) % self.shuffle_factor
            mod_pad_w = (
                self.shuffle_factor - w % self.shuffle_factor
            ) % self.shuffle_factor
            x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
            x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor)
            x = self.model(x)
            return x[:, :, : h * self.scale, : w * self.scale]
        return self.model(x)