File size: 6,639 Bytes
d4201a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import math
import cv2
import numpy as np
import onnxruntime
from onnxruntime.capi import _pybind_state as C
import sys


class NudeDetector:
    __labels = [
        "FEMALE_GENITALIA_COVERED",
        "FACE_FEMALE",
        "BUTTOCKS_EXPOSED",
        "FEMALE_BREAST_EXPOSED",
        "FEMALE_GENITALIA_EXPOSED",
        "MALE_BREAST_EXPOSED",
        "ANUS_EXPOSED",
        "FEET_EXPOSED",
        "BELLY_COVERED",
        "FEET_COVERED",
        "ARMPITS_COVERED",
        "ARMPITS_EXPOSED",
        "FACE_MALE",
        "BELLY_EXPOSED",
        "MALE_GENITALIA_EXPOSED",
        "ANUS_COVERED",
        "FEMALE_BREAST_COVERED",
        "BUTTOCKS_COVERED",
    ]

    __nude_labels = [
        "BUTTOCKS_EXPOSED",
        "ANUS_EXPOSED",
        "FEMALE_BREAST_EXPOSED",
        "FEMALE_GENITALIA_EXPOSED",
        "MALE_GENITALIA_EXPOSED",
        "BELLY_EXPOSED"
    ]

    def __init__(self, image=None, providers=None):
        self.image = image
        self.onnx_session = onnxruntime.InferenceSession(
            os.path.join(os.path.dirname(__file__), "best.onnx"),
            providers=C.get_available_providers() if not providers else providers,
        )
        model_inputs = self.onnx_session.get_inputs()
        input_shape = model_inputs[0].shape
        self.input_width = input_shape[2]  # 320
        self.input_height = input_shape[3]  # 320
        self.input_name = model_inputs[0].name
        if image is not None:
            self.detections = self.detect()

    def set_image(self, image):
        self.image = image
        self.detections = self.detect()

    def process_image(self, target_size=320):
        img = self.image
        img_height, img_width = img.shape[:2]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        aspect = img_width / img_height
        if img_height > img_width:
            new_height = target_size
            new_width = int(round(target_size * aspect))
        else:
            new_width = target_size
            new_height = int(round(target_size / aspect))
        resize_factor = math.sqrt(
            (img_width ** 2 + img_height ** 2) / (new_width ** 2 + new_height ** 2)
        )
        img = cv2.resize(img, (new_width, new_height))
        pad_x = target_size - new_width
        pad_y = target_size - new_height
        pad_top, pad_bottom = [int(i) for i in np.floor([pad_y, pad_y]) / 2]
        pad_left, pad_right = [int(i) for i in np.floor([pad_x, pad_x]) / 2]
        img = cv2.copyMakeBorder(
            img,
            pad_top,
            pad_bottom,
            pad_left,
            pad_right,
            cv2.BORDER_CONSTANT,
            value=[0, 0, 0],
        )
        img = cv2.resize(img, (target_size, target_size))
        image_data = img.astype("float32") / 255.0  # normalize
        image_data = np.transpose(image_data, (2, 0, 1))
        image_data = np.expand_dims(image_data, axis=0)
        return image_data, resize_factor, pad_left, pad_top

    def process_detections(self, output, resize_factor, pad_left, pad_top):
        outputs = np.transpose(np.squeeze(output[0]))
        rows = outputs.shape[0]
        boxes = []
        scores = []
        class_ids = []
        for i in range(rows):
            classes_scores = outputs[i][4:]
            max_score = np.amax(classes_scores)
            if max_score >= 0.2:
                class_id = np.argmax(classes_scores)
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
                left = int(round((x - w * 0.5 - pad_left) * resize_factor))
                top = int(round((y - h * 0.5 - pad_top) * resize_factor))
                width = int(round(w * resize_factor))
                height = int(round(h * resize_factor))
                class_ids.append(class_id)
                scores.append(max_score)
                boxes.append([left, top, width, height])
        indices = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45)
        detections = []
        for i in indices:
            box = boxes[i]
            score = scores[i]
            class_id = class_ids[i]
            detections.append(
                {"class": self.__labels[class_id], "score": float(score), "box": box}
            )
        return detections

    def detect(self):
        if self.image is None:
            print(
                "Error: Please provide an image either during initialization NudeDetector or by using the set_image method after initializing.")
            sys.exit(1)
        preprocessed_image, resize_factor, pad_left, pad_top = self.process_image(
            self.input_width
        )
        outputs = self.onnx_session.run(None, {self.input_name: preprocessed_image})
        detections = self.process_detections(outputs, resize_factor, pad_left, pad_top)
        return detections

    def visualize(self, parmanent=False, classes=None):
        if classes is None:
            classes = self.__nude_labels
        detections = self.detections
        if classes:
            detections = [detection for detection in detections if detection["class"] in classes]
        if parmanent:
            img = self.image
        else:
            img = self.image.copy()
        for detection in detections:
            box = detection["box"]
            x, y, w, h = box[0], box[1], box[2], box[3]
            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
            label = f"{detection['class']} ({round(detection['score'], 2)})"
            cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        return img

    def blur_nudity(self, parmanent=False, nude_classes=None):
        if nude_classes is None:
            nude_classes = self.__nude_labels
        detections = self.detections
        if parmanent:
            img = self.image
        else:
            img = self.image.copy()
        for detection in detections:
            if detection["class"] in nude_classes:
                box = detection["box"]
                x, y, w, h = box[0], box[1], box[2], box[3]
                blurred_area = img[y:y + h, x:x + w]
                blurred_area = cv2.GaussianBlur(blurred_area, (75, 75), 100)
                img[y:y + h, x:x + w] = blurred_area
        return img

    def is_nude(self, nude_classes=None, threshold=0.7):
        if nude_classes is None:
            nude_classes = self.__nude_labels
        detections = self.detections
        is_nude = False
        for detection in detections:
            if detection["class"] in nude_classes and detection["score"] >= threshold:
                is_nude = True
        return is_nude