File size: 22,875 Bytes
b2659ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import torch
from torch import Tensor
from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt, _stack_if_compiling,
                        _capturable_doc, _differentiable_doc, _foreach_doc, _default_to_fused_or_foreach, _view_as_real)
from typing import List, Optional

__all__ = ['NAdam', 'nadam']

class NAdam(Optimizer):
    def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,

                 weight_decay=0, momentum_decay=4e-3, decoupled_weight_decay: bool = False,

                 *, foreach: Optional[bool] = None, capturable: bool = False,

                 differentiable: bool = False):
        if not 0.0 <= lr:
            raise ValueError(f"Invalid learning rate: {lr}")
        if not 0.0 <= eps:
            raise ValueError(f"Invalid epsilon value: {eps}")
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
        if not 0.0 <= weight_decay:
            raise ValueError(f"Invalid weight_decay value: {weight_decay}")
        if not 0.0 <= momentum_decay:
            raise ValueError(f"Invalid momentum_decay value: {momentum_decay}")
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay, momentum_decay=momentum_decay,
                        decoupled_weight_decay=decoupled_weight_decay,
                        foreach=foreach, capturable=capturable, differentiable=differentiable)
        super().__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('foreach', None)
            group.setdefault('capturable', False)
            group.setdefault('differentiable', False)
            group.setdefault('decoupled_weight_decay', False)
        state_values = list(self.state.values())
        step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
        if not step_is_tensor:
            for s in state_values:
                s['step'] = torch.tensor(float(s['step']), dtype=torch.float32)
        mu_product_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu_product'])
        if not mu_product_is_tensor:
            for s in state_values:
                s['mu_product'] = torch.tensor(s['mu_product'], dtype=torch.float32)

    def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps):
        has_complex = False
        for p in group['params']:
            if p.grad is not None:
                has_complex |= torch.is_complex(p)
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError('NAdam does not support sparse gradients')
                grads.append(p.grad)

                state = self.state[p]
                # Lazy state initialization
                if len(state) == 0:
                    # note(crcrpar): [special device hosting for step]
                    # Deliberately host `step` and `mu_product` on CPU if capturable is False.
                    # This is because kernel launches are costly on CUDA and XLA.
                    state['step'] = (
                        torch.zeros((), dtype=torch.float32, device=p.device)
                        if group['capturable'] else torch.tensor(0.0, dtype=torch.float32)
                    )
                    state['mu_product'] = (
                        torch.ones((), dtype=torch.float32, device=p.device)
                        if group['capturable'] else torch.tensor(1.0, dtype=torch.float32)
                    )
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    # Exponential moving average of squared gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                exp_avgs.append(state['exp_avg'])
                exp_avg_sqs.append(state['exp_avg_sq'])
                mu_products.append(state['mu_product'])
                state_steps.append(state['step'])
        return has_complex

    @_use_grad_for_differentiable
    def step(self, closure=None):
        """Performs a single optimization step.



        Args:

            closure (Callable, optional): A closure that reevaluates the model

                and returns the loss.

        """
        self._cuda_graph_capture_health_check()

        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            mu_products = []
            state_steps = []
            beta1, beta2 = group['betas']

            has_complex = self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps)

            nadam(params_with_grad,
                  grads,
                  exp_avgs,
                  exp_avg_sqs,
                  mu_products,
                  state_steps,
                  beta1=beta1,
                  beta2=beta2,
                  lr=group['lr'],
                  weight_decay=group['weight_decay'],
                  momentum_decay=group['momentum_decay'],
                  eps=group['eps'],
                  decoupled_weight_decay=group['decoupled_weight_decay'],
                  foreach=group['foreach'],
                  capturable=group['capturable'],
                  differentiable=group['differentiable'],
                  has_complex=has_complex)

        return loss

NAdam.__doc__ = r"""Implements NAdam algorithm.



    .. math::

       \begin{aligned}

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{input}      : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},

                \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}                   \\

            &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)}    \\

            &\hspace{13mm} \: \textit{decoupled\_weight\_decay}                                  \\

            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},

                v_0 \leftarrow 0 \text{ ( second moment)}                                 \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                                 \\

            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\

            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\

            &\hspace{5mm} \theta_t \leftarrow \theta_{t-1}                                       \\

            &\hspace{5mm} \textbf{if} \: \lambda \neq 0                                          \\

            &\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\

            &\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1}                    \\

            &\hspace{10mm}\textbf{else}                                                          \\

            &\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1}                             \\

            &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2}  0.96^{t \psi} \big)     \\

            &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\

            &\hspace{5mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\

            &\hspace{5mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\

            &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]

            & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i})                         \\

            &\hspace{5mm}\widehat{v_t} \leftarrow   v_t/\big(1-\beta_2^t \big)                   \\

            &\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/

                \big(\sqrt{\widehat{v_t}} + \epsilon \big)                                       \\

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

            &\bf{return} \:  \theta_t                                                     \\[-1.ex]

            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]

       \end{aligned}



    For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.

    """ + fr"""

    Args:

        params (iterable): iterable of parameters to optimize or dicts defining

            parameter groups

        lr (float, optional): learning rate (default: 2e-3)

        betas (Tuple[float, float], optional): coefficients used for computing

            running averages of gradient and its square (default: (0.9, 0.999))

        eps (float, optional): term added to the denominator to improve

            numerical stability (default: 1e-8)

        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)

        momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)

        decoupled_weight_decay (bool, optional): whether to use decoupled weight

            decay as in AdamW to obtain NAdamW (default: False)

        {_foreach_doc}

        {_capturable_doc}

        {_differentiable_doc}



    .. _Incorporating Nesterov Momentum into Adam:

        https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ

    .. _Decoupled Weight Decay Regularization:

        https://arxiv.org/abs/1711.05101



    """


def nadam(params: List[Tensor],

          grads: List[Tensor],

          exp_avgs: List[Tensor],

          exp_avg_sqs: List[Tensor],

          mu_products: List[Tensor],

          state_steps: List[Tensor],

          # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627

          # setting this as kwarg for now as functional API is compiled by torch/distributed/optim

          decoupled_weight_decay: bool = False,

          foreach: Optional[bool] = None,

          capturable: bool = False,

          differentiable: bool = False,

          has_complex: bool = False,

          *,

          beta1: float,

          beta2: float,

          lr: float,

          weight_decay: float,

          momentum_decay: float,

          eps: float):
    r"""Functional API that performs NAdam algorithm computation.



    See :class:`~torch.optim.NAdam` for details.

    """


    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")

    if not all(isinstance(t, torch.Tensor) for t in mu_products):
        raise RuntimeError("API has changed, `mu_products` argument must contain a list of singleton tensors")

    if foreach is None:
        _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)

    if foreach and torch.jit.is_scripting():
        raise RuntimeError('torch.jit.script not supported with foreach optimizers')

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_nadam
    else:
        func = _single_tensor_nadam

    func(params,
         grads,
         exp_avgs,
         exp_avg_sqs,
         mu_products,
         state_steps,
         beta1=beta1,
         beta2=beta2,
         lr=lr,
         weight_decay=weight_decay,
         momentum_decay=momentum_decay,
         decoupled_weight_decay=decoupled_weight_decay,
         eps=eps,
         capturable=capturable,
         differentiable=differentiable,
         has_complex=has_complex)


def _single_tensor_nadam(params: List[Tensor],

                         grads: List[Tensor],

                         exp_avgs: List[Tensor],

                         exp_avg_sqs: List[Tensor],

                         mu_products: List[Tensor],

                         state_steps: List[Tensor],

                         *,

                         beta1: float,

                         beta2: float,

                         lr: float,

                         weight_decay: float,

                         momentum_decay: float,

                         eps: float,

                         decoupled_weight_decay: bool,

                         capturable: bool,

                         differentiable: bool,

                         has_complex: bool):

    for i, param in enumerate(params):
        grad = grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        mu_product = mu_products[i]
        step_t = state_steps[i]

        if torch.is_complex(param):
            param = torch.view_as_real(param)
            grad = torch.view_as_real(grad)
            exp_avg = torch.view_as_real(exp_avg)
            exp_avg_sq = torch.view_as_real(exp_avg_sq)

        # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
        if not torch._utils.is_compiling() and capturable:
            assert (
                (param.is_cuda and mu_product.is_cuda and step_t.is_cuda) or (param.is_xla and mu_product.is_xla and step_t.is_xla)
            ), "If capturable=True, params, mu_products, and state_steps must be CUDA or XLA tensors."

        # update step
        step_t += 1

        if capturable:
            step = step_t
        else:
            step = _get_value(step_t)

        bias_correction2 = 1 - beta2 ** step

        if weight_decay != 0:
            if decoupled_weight_decay:
                # Perform stepweight decay
                param.mul_(1 - lr * weight_decay)
            else:
                grad = grad.add(param, alpha=weight_decay)

        # calculate the momentum cache \mu^{t} and \mu^{t+1}
        mu = beta1 * (1. - 0.5 * (0.96 ** (step * momentum_decay)))
        mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))

        # update mu_product
        mu_product *= mu

        # decay the first and second moment running average coefficient
        exp_avg.lerp_(grad, 1 - beta1)
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
        denom = exp_avg_sq.div(bias_correction2).sqrt()

        if differentiable or capturable:
            denom = denom.add(eps)
            # Make autograd track the operations
            # by updating the grad and exp_avg directly and not using the
            # scalar "value" argument of addcdiv.
            mu_product_next = mu_product * mu_next
            grad = grad * (-lr * (1. - mu) / (1. - mu_product))
            exp_avg = exp_avg * (-lr * mu_next / (1. - mu_product_next))
            param.addcdiv_(grad, denom)
            param.addcdiv_(exp_avg, denom)
        else:
            mu_product_next = _get_value(mu_product) * mu_next
            denom.add_(eps)
            param.addcdiv_(grad, denom, value=(-lr * (1. - mu) / (1. - _get_value(mu_product))))
            param.addcdiv_(exp_avg, denom, value=(-lr * mu_next) / (1. - mu_product_next))


def _multi_tensor_nadam(params: List[Tensor],

                        grads: List[Tensor],

                        exp_avgs: List[Tensor],

                        exp_avg_sqs: List[Tensor],

                        mu_products: List[Tensor],

                        state_steps: List[Tensor],

                        *,

                        beta1: float,

                        beta2: float,

                        lr: float,

                        weight_decay: float,

                        momentum_decay: float,

                        eps: float,

                        decoupled_weight_decay: bool,

                        capturable: bool,

                        differentiable: bool,

                        has_complex: bool):

    if len(params) == 0:
        return

    assert not differentiable, "_foreach ops don't support autograd"

    # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
    if not torch._utils.is_compiling() and capturable:
        assert all(p.is_cuda and mp.is_cuda and step.is_cuda
                   for p, mp, step in zip(params, mu_products, state_steps)), \
            "If capturable=True, params, mu_products, and state_steps must be CUDA tensors."


    grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps])
    for ((grouped_params, grouped_grads, grouped_exp_avgs,
         grouped_exp_avg_sqs, grouped_mu_products, grouped_state_steps), _) in grouped_tensors.values():

        # handle complex
        if has_complex:
            _view_as_real(grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs)

        # Update steps
        # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
        # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
        # wrapped it once now. The alpha is required to assure we go to the right overload.
        if grouped_state_steps[0].is_cpu:
            torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
        else:
            torch._foreach_add_(grouped_state_steps, 1)

        if weight_decay != 0:
            if decoupled_weight_decay:
                # Perform stepweight decay
                torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
            else:
                grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)

        # Decay the first and second moment running average coefficient
        torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)

        torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
        torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)

        exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)

        if capturable:
            # mus will be beta1 * (1 - 0.5 * 0.96 ** (step * momentum_decay))
            exponent = torch._foreach_mul(grouped_state_steps, momentum_decay)
            mus = torch._foreach_pow(0.96, exponent)
            torch._foreach_mul_(mus, -0.5)
            torch._foreach_add_(mus, 1.0)
            torch._foreach_mul_(mus, beta1)

            # mu_nexts will be beta1 * (1 - 0.5 * 0.96 ** ((step + 1) * momentum_decay))
            torch._foreach_add_(exponent, momentum_decay)
            mu_nexts = torch._foreach_pow(0.96, exponent)
            torch._foreach_mul_(mu_nexts, -0.5)
            torch._foreach_add_(mu_nexts, 1.0)
            torch._foreach_mul_(mu_nexts, beta1)

            # save peak memory as we don't need exponent anymore
            del exponent

            bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps)
            # foreach_sub doesn't allow a scalar as the first arg
            torch._foreach_sub_(bias_correction_sqrt, 1.0)
            torch._foreach_neg_(bias_correction_sqrt)
            torch._foreach_sqrt_(bias_correction_sqrt)
        else:
            bias_correction_sqrt = [_dispatch_sqrt(1 - beta2 ** _get_value(step)) for step in grouped_state_steps]
            mus = [beta1 * (1. - 0.5 * (0.96 ** (_get_value(step) * momentum_decay))) for step in grouped_state_steps]
            mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay)))
                        for step in grouped_state_steps]

        # update mu_products
        torch._foreach_mul_(grouped_mu_products, mus)

        torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
        torch._foreach_add_(exp_avg_sq_sqrt, eps)

        # explicitly delete bias_correction refs to save memory
        del bias_correction_sqrt

        if capturable:
            # Build up the step_size multiplier for grad, reusing mus' memory
            torch._foreach_sub_(mus, 1.0)
            torch._foreach_mul_(mus, lr)
            # foreach_sub doesn't allow a scalar as the first arg
            denom = torch._foreach_sub(grouped_mu_products, 1.0)
            torch._foreach_neg_(denom)
            torch._foreach_div_(mus, denom)
            # - lr * (1 - mu) / (1 - mu_product)
            step_size_grads = mus
            # explicitly delete denom to save memory
            del denom

            # Build up the step_size multiplier for exp_avg, reusing mu_nexts' memory
            denom = torch._foreach_mul(grouped_mu_products, mu_nexts)
            torch._foreach_mul_(mu_nexts, lr)
            # foreach_sub doesn't allow a scalar as the first arg, but it's okay because
            # we need a negative here anyway
            torch._foreach_sub_(denom, 1.0)
            torch._foreach_div_(mu_nexts, denom)
            # - lr * mu_next / (1 - mu_product * mu_next)
            step_size_expavg = mu_nexts
            # explicitly delete denom to save memory
            del denom

            # we cannot inplace into step_size_grads cuz it is a list of ScalarTensors
            # and mul'ing with grouped_grads will result in a list of bigger Tensors
            numerator = torch._foreach_mul(step_size_grads, grouped_grads)
            torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs)

            # finally, update params
            torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt)
        else:
            step_size_grads = _stack_if_compiling([(lr * (1. - mu) / (1. - _get_value(mu_product))) * -1
                                                   for mu_product, mu in zip(grouped_mu_products, mus)])
            step_size_expavg = _stack_if_compiling([(lr * mu_next / (1. - _get_value(mu_product) * mu_next)) * -1
                                                    for mu_product, mu_next in zip(grouped_mu_products, mu_nexts)])

            torch._foreach_addcdiv_(grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads)
            torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg)