File size: 46,059 Bytes
b2659ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
import builtins
import copy
import functools
import inspect
import math
import os
import warnings
import collections
from itertools import chain
from types import CodeType, FunctionType, ModuleType
from typing import (
    Any,
    Callable,
    Dict,
    List,
    NamedTuple,
    Optional,
    Set,
    Tuple,
    Type,
    Union,
)

import torch
import torch.utils._pytree as pytree
from torch._C import ScriptObject  # type: ignore[attr-defined]

from ._compatibility import compatibility
from .graph import _PyTreeCodeGen, _PyTreeInfo, Graph
from .graph_module import GraphModule
from .node import Argument, base_types, map_aggregate
from .proxy import ParameterProxy, Proxy, TracerBase, Scope, ScopeContextManager

HAS_VARSTUFF = inspect.CO_VARARGS | inspect.CO_VARKEYWORDS

# These need to run in global scope to handle nested calls correctly
_orig_module_call: Callable = torch.nn.Module.__call__
_orig_module_getattr: Callable = torch.nn.Module.__getattr__

_proxyable_classes: Dict[Type, None] = {}

_is_fx_tracing_flag = False


def is_fx_tracing():
    return _is_fx_tracing_flag

@compatibility(is_backward_compatible=True)
class ProxyableClassMeta(type):
    """

    ProxyableClassMeta allows you to make construction of a given Python class

    symbolically traceable. For example::



        import torch

        import torch.fx



        class TensorPair(metaclass=torch.fx.ProxyableClassMeta):

            def __init__(self, left, right):

                self.left, self.right = left, right



            def add(self, other):

                l = self.left + other.left

                r = self.right + other.right

                return TensorPair(l, r)



            def mul(self, other):

                l = self.left * other.left

                r = self.right * other.right

                return TensorPair(l, r)



        def use_tensor_pair_ctor(x : TensorPair, y : torch.Tensor):

            s = x.add(TensorPair(y, y))

            return s.mul(x)



        x = TensorPair(torch.randn(5, 3), torch.randn(5, 3))

        y = torch.randn(5, 3)

        ref_out = use_tensor_pair_ctor(x, y)



        traced = torch.fx.symbolic_trace(use_tensor_pair_ctor)

        print(traced.code)

        '''

        def forward(self, x : __main___TensorPair, y : torch.Tensor):

            tensor_pair = __main___TensorPair(y, y);  y = None

            add = x.add(tensor_pair);  tensor_pair = None

            mul = add.mul(x);  add = x = None

            return mul

        '''



    From this example, we can see that construction of a class (``TensorPair``)

    defined with ``ProxyableClassMeta`` as metaclass can be recorded in symbolic

    tracing.

    """

    def __init__(cls, name, bases, attrs):
        _proxyable_classes.setdefault(cls)
        super().__init__(name, bases, attrs)

    def __call__(cls, *args, **kwargs):
        instance = cls.__new__(cls)  # type: ignore[call-overload]

        if not is_fx_tracing():
            cls.__init__(instance, *args, **kwargs)  # type: ignore[misc]
            return instance

        found_proxies = []

        def check_proxy(a):
            if isinstance(a, Proxy):
                found_proxies.append(a)

        map_aggregate(args, check_proxy)
        map_aggregate(kwargs, check_proxy)

        if len(found_proxies) != 0:
            tracer = found_proxies[0].tracer
            return tracer.create_proxy("call_function", cls, args, kwargs)
        else:
            cls.__init__(instance, *args, **kwargs)  # type: ignore[misc]
            return instance


def _patch_function(fn: FunctionType, nargs: int) -> FunctionType:
    co = fn.__code__
    co_flags = co.co_flags & ~HAS_VARSTUFF
    co_args: tuple
    if hasattr(co, "co_qualname"):
        # Python-3.11+ code signature
        co_args = (
            nargs,
            0,
            0,
            co.co_nlocals,
            co.co_stacksize,
            co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_qualname,  # type: ignore[attr-defined]
            co.co_firstlineno,
            co.co_lnotab,
            co.co_exceptiontable,  # type: ignore[attr-defined]
            co.co_freevars,
            co.co_cellvars,
        )
    elif hasattr(co, "co_posonlyargcount"):
        co_args = (
            nargs,
            0,
            0,
            co.co_nlocals,
            co.co_stacksize,
            co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_firstlineno,
            co.co_lnotab,
            co.co_freevars,
            co.co_cellvars,
        )
    else:
        co_args = (
            nargs,
            0,
            co.co_nlocals,
            co.co_stacksize,
            co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_firstlineno,
            co.co_lnotab,
            co.co_freevars,
            co.co_cellvars,
        )
    new_code = CodeType(*co_args)  # type: ignore[arg-type]
    return FunctionType(
        new_code, fn.__globals__, fn.__name__, fn.__defaults__, fn.__closure__
    )

    # we need to insert placeholder nodes for *args and **kwargs
    # we can't call this function normally, otherwise it would try to unpack them
    # instead, let's make python think that args and kwargs are normal variables


@compatibility(is_backward_compatible=False)
class PHBase:
    """

    Object representing an input placeholder to `concrete_args`

    """

    def __repr__(self):
        return "PH"


PH = PHBase()


@compatibility(is_backward_compatible=False)
class PHWithMeta(PHBase):
    """

    Object representing an input placeholder to `concrete_args`

    """
    def __init__(self, ph_key: Optional[str] = None):
        super().__init__()

        # Provide a hey for user to identify placeholder node during analysis
        self.ph_key = ph_key


@compatibility(is_backward_compatible=True)
class Tracer(TracerBase):
    # Reference: https://github.com/pytorch/pytorch/issues/54354
    # The first line of this docstring overrides the one Sphinx generates for the
    # documentation. We need it so that Sphinx doesn't leak `math`s path from the
    # build environment (e.g. `<module 'math' from '/leaked/path').

    """Tracer(autowrap_modules=(math,), autowrap_functions=())



    ``Tracer`` is the class that implements the symbolic tracing functionality

    of ``torch.fx.symbolic_trace``. A call to ``symbolic_trace(m)`` is equivalent

    to ``Tracer().trace(m)``.



    Tracer can be subclassed to override various behaviors of the tracing

    process. The different behaviors that can be overridden are described

    in the docstrings of the methods on this class.

    """

    # Not checking BC on this API because the default value for `autowrap_modules`
    # includes the local filepath to the `math` module, which would jitter
    # across machines.
    @compatibility(is_backward_compatible=True)
    def __init__(

        self,

        autowrap_modules: Tuple[ModuleType] = (math,),

        autowrap_functions: Tuple[Callable, ...] = (),

        param_shapes_constant: bool = False,

    ) -> None:
        # This method's signature is overridden by the first line of this class'
        # docstring. If this method's signature is modified, the signature that
        # overrides it also should be modified accordingly.

        """

        Construct a Tracer object.



        Args:



            autowrap_modules (Tuple[ModuleType]): defaults to `(math, )`,

                Python modules whose functions should be wrapped automatically

                without needing to use fx.wrap(). Backward-compatibility for

                this parameter is guaranteed.



            autowrap_functions (Tuple[Callable, ...]): defaults to `()`,

                Python functions that should be wrapped automatically without

                needing to use fx.wrap(). Backward compatibility for this

                parameter is guaranteed.



            param_shapes_constant (bool): When this flag is set,  calls to shape,

                size and a few other shape like attributes of a module's parameter

                will be evaluated directly, rather than returning a new Proxy value

                for an attribute access. Backward compatibility for this parameter

                is guaranteed.

        """

        super().__init__()

        # Functions we will eagerly wrap when we see them while tracing
        # this captures both `math.sqrt()` and `from math import sqrt` automatically
        self._autowrap_function_ids: Set[int] = {
            id(value)
            for name, value in chain(*[m.__dict__.items() for m in autowrap_modules])
            if not name.startswith("_") and callable(value)
        }
        self._autowrap_function_ids.update({id(f) for f in autowrap_functions})

        # Python modules to apply autowrap to at the start, in addition to
        # modules we see while tracing
        self._autowrap_search: List[ModuleType] = list(autowrap_modules)
        self.param_shapes_constant = param_shapes_constant

        self.submodule_paths: Optional[Dict[torch.nn.Module, str]] = None
        self.root_module_name: str = ""
        # Maps the containing module's name to the operator name
        self.scope = Scope("", None)
        # Records the module call stack
        self.module_stack = collections.OrderedDict()
        # Mapping of node name to module scope
        self.node_name_to_scope: Dict[str, Tuple[str, type]] = {}

    @compatibility(is_backward_compatible=True)
    def create_arg(self, a: Any) -> "Argument":
        """

        A method to specify the behavior of tracing when preparing values to

        be used as arguments to nodes in the ``Graph``.



        By default, the behavior includes:



        #. Iterate through collection types (e.g. tuple, list, dict) and recursively

           call ``create_args`` on the elements.

        #. Given a Proxy object, return a reference to the underlying IR ``Node``

        #. Given a non-Proxy Tensor object, emit IR for various cases:



            * For a Parameter, emit a ``get_attr`` node referring to that Parameter

            * For a non-Parameter Tensor, store the Tensor away in a special

              attribute referring to that attribute.



        This method can be overridden to support more types.



        Args:



            a (Any): The value to be emitted as an ``Argument`` in the ``Graph``.





        Returns:



            The value ``a`` converted into the appropriate ``Argument``

        """
        # The base tracer is used to construct Graphs when there is no associated
        # module hierarchy, so it can never create parameter references.
        # The default tracer adds the ability to refer to parameters when
        # tracing modules.
        if isinstance(a, torch.nn.Parameter):
            for n, p in self.root.named_parameters():
                if a is p:
                    return self.create_node("get_attr", n, (), {})
            raise NameError("parameter is not a member of this module")
        elif isinstance(a, torch.Tensor):
            for n_, p_ in self.root.named_buffers():
                if a is p_:
                    return self.create_node("get_attr", n_, (), {})
        elif isinstance(a, torch.nn.Module):
            for n_, p_ in self.root.named_modules():
                if a is p_:
                    return self.create_node("get_attr", n_, (), {})
        # For NamedTuple instances that appear literally as args, we emit
        # a node to construct the NamedTuple and use that Node as the argument.
        if isinstance(a, tuple) and hasattr(a, "_fields"):
            args = tuple(self.create_arg(elem) for elem in a)
            return self.create_node("call_function", a.__class__, args, {})

        # Tensors do not have a reliable string repr() from which they can be
        # constructed (and we probably don't want to rely on that, either), so
        # for any constant Tensor values we encounter, first search for if they
        # are an attribute of some module in the module hierarchy. If so, emit
        # a get_attr to retrieve that tensor. Otherwise, we'll store away the
        # tensor value into a special attribute on the Module s.t. we can
        # retrieve it with a get_attr.
        if isinstance(a, (torch.Tensor, ScriptObject)):
            qualname: Optional[str] = self.tensor_attrs.get(a)

            # Tensor was not found in the Module hierarchy, stow it away in a
            # special attribute and set the qualname to refer to that
            if not qualname:
                i = 0
                while True:
                    qualname = f"_tensor_constant{i}"
                    if not hasattr(self.root, qualname):
                        break
                    i += 1
                self.tensor_attrs[a] = qualname
                setattr(self.root, qualname, a)

            return self.create_node("get_attr", qualname, (), {})

        if type(a) in _proxyable_classes:
            # This is an instance of a proxyable class for which we did not
            # witness its construction. Intern this as a constant attribute

            # TODO: binary search
            i = 0
            while True:
                qualname = f"_{a.__class__.__name__}_constant_{i}"
                if not hasattr(self.root, qualname):
                    break
                i += 1
            setattr(self.root, qualname, a)

            return self.create_node("get_attr", qualname, (), {})

        return super().create_arg(a)

    @compatibility(is_backward_compatible=True)
    def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
        """

        A method to specify whether a given ``nn.Module`` is a "leaf" module.



        Leaf modules are the atomic units that appear in

        the IR, referenced by ``call_module`` calls. By default,

        Modules in the PyTorch standard library namespace (torch.nn)

        are leaf modules. All other modules are traced through and

        their constituent ops are recorded, unless specified otherwise

        via this parameter.



        Args:



            m (Module): The module being queried about

            module_qualified_name (str): The path to root of this module. For example,

                if you have a module hierarchy where submodule ``foo`` contains

                submodule ``bar``, which contains submodule ``baz``, that module will

                appear with the qualified name ``foo.bar.baz`` here.

        """
        return (
            (m.__module__.startswith("torch.nn") or m.__module__.startswith("torch.ao.nn"))
            and not isinstance(m, torch.nn.Sequential)
        )

    @compatibility(is_backward_compatible=True)
    def path_of_module(self, mod: torch.nn.Module) -> str:
        """

        Helper method to find the qualified name of ``mod`` in the Module hierarchy

        of ``root``. For example, if ``root`` has a submodule named ``foo``, which has

        a submodule named ``bar``, passing ``bar`` into this function will return

        the string "foo.bar".



        Args:



            mod (str): The ``Module`` to retrieve the qualified name for.

        """
        # Prefer the O(1) algorithm
        if self.submodule_paths:
            path = self.submodule_paths.get(mod)
            if path is None:
                raise NameError("module is not installed as a submodule")
            assert isinstance(path, str)
            return path
        # O(N^2) fallback in the case that we didn't store the submodule
        # paths.
        else:
            for n, p in self.root.named_modules():
                if mod is p:
                    return n
            raise NameError("module is not installed as a submodule")

    @compatibility(is_backward_compatible=True)
    def call_module(

        self,

        m: torch.nn.Module,

        forward: Callable[..., Any],

        args: Tuple[Any, ...],

        kwargs: Dict[str, Any],

    ) -> Any:
        """

        Method that specifies the behavior of this ``Tracer`` when it encounters

        a call to an ``nn.Module`` instance.



        By default, the behavior is to check if the called module is a leaf module

        via ``is_leaf_module``. If it is, emit a ``call_module`` node referring to

        ``m`` in the ``Graph``. Otherwise, call the ``Module`` normally, tracing through

        the operations in its ``forward`` function.



        This method can be overridden to--for example--create nested traced

        GraphModules, or any other behavior you would want while tracing across

        ``Module`` boundaries.



        Args:



            m (Module): The module for which a call is being emitted

            forward (Callable): The forward() method of the ``Module`` to be invoked

            args (Tuple): args of the module callsite

            kwargs (Dict): kwargs of the module callsite



        Return:



            The return value from the Module call. In the case that a ``call_module``

            node was emitted, this is a ``Proxy`` value. Otherwise, it is whatever

            value was returned from the ``Module`` invocation.

        """
        module_qualified_name = self.path_of_module(m)
        with ScopeContextManager(self.scope, Scope(module_qualified_name, type(m))) as _scope:
            # module_stack is an ordered dict so writing then deleting the
            # entry is equivalent to push/pop on a list
            self.module_stack[_scope.module_path] = (module_qualified_name, _scope.module_type)
            if not self.is_leaf_module(m, module_qualified_name):
                ret_val = forward(*args, **kwargs)
            else:
                ret_val = self.create_proxy("call_module", module_qualified_name, args, kwargs)
            key, _ = self.module_stack.popitem(last=True)
            assert key == _scope.module_path, f" Unexpected key {key}"

        return ret_val

    @compatibility(is_backward_compatible=False)
    def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]):
        """

        Method that specifies the behavior of this ``Tracer`` when we call getattr

        on a call to an ``nn.Module`` instance.



        By default, the behavior is to return a proxy value for the attribute. It

        also stores the proxy value in the ``parameter_proxy_cache``, so that future

        calls will reuse the proxy rather than creating a new one.



        This method can be overridden to --for example-- not return proxies when

        querying parameters.



        Args:



            attr (str): The name of the attribute being queried

            attr_val (Any): The value of the attribute

            parameter_proxy_cache (Dict[str, Any]): A cache of attr names to proxies



        Return:



            The return value from the getattr call.

        """
        def maybe_get_proxy_for_attr(

            attr_val, collection_to_search, parameter_proxy_cache

        ):
            for n, p in collection_to_search:
                if attr_val is p:
                    if n not in parameter_proxy_cache:
                        kwargs = {}
                        if (
                            "proxy_factory_fn"
                            in inspect.signature(self.create_proxy).parameters
                        ):
                            kwargs["proxy_factory_fn"] = (
                                None
                                if not self.param_shapes_constant
                                else lambda node: ParameterProxy(
                                    self, node, n, attr_val
                                )
                            )
                        val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs)  # type: ignore[arg-type]
                        parameter_proxy_cache[n] = val_proxy
                    return parameter_proxy_cache[n]
            return None

        if isinstance(attr_val, torch.nn.Parameter):
            maybe_parameter_proxy = maybe_get_proxy_for_attr(
                attr_val, self.root.named_parameters(), parameter_proxy_cache
            )
            if maybe_parameter_proxy is not None:
                return maybe_parameter_proxy

        if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
            maybe_buffer_proxy = maybe_get_proxy_for_attr(
                attr_val, self.root.named_buffers(), parameter_proxy_cache
            )
            if maybe_buffer_proxy is not None:
                return maybe_buffer_proxy

        return attr_val

    # This method will be refactored
    @compatibility(is_backward_compatible=False)
    def create_args_for_root(self, root_fn, is_module, concrete_args=None):
        """

        Create ``placeholder`` nodes corresponding to the signature of the ``root``

        Module. This method introspects root's signature and emits those

        nodes accordingly, also supporting ``*args`` and ``**kwargs``.

        """
        # In some cases, a function or method has been decorated with a wrapper
        # defined via ``functools.wraps``. In this case, the outer code object
        # will likely not contain the actual parameters we care about, so unwrap
        # the function to get to the innermost callable.
        fn_for_analysis = inspect.unwrap(root_fn)
        co = fn_for_analysis.__code__
        total_args = co.co_argcount + co.co_kwonlyargcount
        orig_args = list(co.co_varnames)
        names_iter = iter(co.co_varnames)
        args: List[Any] = []
        skip_arg_idx = 0
        if is_module:
            if total_args == 0:
                raise RuntimeError(
                    "``self`` argument cannot be part of *args expansion!"
                )
            skip_arg_idx = 1
            next(names_iter)  # skip self
            args.append(self.root)

        sig = inspect.signature(fn_for_analysis)

        def proxy_placeholder(name: str):
            if concrete_args is not None and name in concrete_args:
                cnt = 0

                def replace_ph(x):
                    nonlocal cnt
                    cnt += 1
                    param = sig.parameters[name]
                    default = (
                        ()
                        if param.default is inspect.Parameter.empty
                        else (param.default,)
                    )
                    out = self.create_proxy(
                        "placeholder", f"{name}_{str(cnt)}", default, {}
                    )
                    if isinstance(x, PHBase):
                        def transfer_attrs(fr, to):
                            for attr_name in dir(fr):
                                attr_val = getattr(fr, attr_name)
                                if (
                                    not callable(attr_val)
                                    and not attr_name.startswith("__")
                                    and not hasattr(to, attr_name)
                                ):
                                    setattr(to, attr_name, attr_val)

                        if x != PH:
                            # Transfer attrs in the case where you're using a placeholder other
                            # than the singleton PH (PH has no attributes to transfer).
                            # Proxies were created out of the placeholders.
                            # Transfer any metadata (put on the placeholders in the form of
                            # attributes set by the user) from the placeholder to the
                            # underlying nodes (the proxy is unwrapped by the user, but
                            # the metadata should hold).
                            transfer_attrs(fr=x, to=out.node)

                        return out
                    # Union[int, bool] == bool in Python <= 3.6
                    if (
                        type(x) == bool
                        or type(x) in base_types
                        and type(x) != torch.Tensor
                    ):
                        torch._assert(
                            out == x,
                            f"{name} has been specialized to have value {x} but got another value",
                        )
                    elif type(x) == type(None):
                        args = (
                            out,
                            f"{name} has been specialized to have value None but got another value",
                        )
                        self.create_proxy("call_function", _assert_is_none, args, {})
                    else:
                        warnings.warn(
                            f"Was not able to add assertion to guarantee correct input {name} to "
                            f"specialized function. It is up to the user to make sure that your inputs match the "
                            f"inputs you specialized the function with."
                        )

                    return x

                return pytree.tree_map(replace_ph, concrete_args[name])
            if name[0] == "*":
                default = ()
            else:
                param = sig.parameters[name]
                default = () if param.default is inspect.Parameter.empty else (param.default,)  # type: ignore[assignment]
            return self.create_proxy(
                "placeholder",
                name,
                default,
                {},
                type_expr=fn_for_analysis.__annotations__.get(name, None)
            )

        arg_names = [next(names_iter) for idx in range(skip_arg_idx, total_args)]
        if isinstance(concrete_args, tuple):
            if len(arg_names) != len(concrete_args):
                raise RuntimeError(
                    f"Tracing expected {len(arg_names)} arguments but got {len(concrete_args)} concrete arguments"
                )
            concrete_args = dict(zip(arg_names, concrete_args))
        args.extend(proxy_placeholder(names) for names in arg_names)

        if co.co_kwonlyargcount > 0 or co.co_flags & HAS_VARSTUFF:
            # TODO: type annotations for *args and **kwargs
            if co.co_flags & inspect.CO_VARARGS:
                args.append(proxy_placeholder("*" + next(names_iter)))
            if co.co_flags & inspect.CO_VARKEYWORDS:
                args.append(proxy_placeholder("**" + next(names_iter)))
            root_fn = _patch_function(root_fn, len(args))

        flat_args, in_spec = pytree.tree_flatten(tuple(args))
        if any(not isinstance(i, pytree.LeafSpec) for i in in_spec.children_specs):
            # In the case that we have pytree-flattened inputs in
            # `concrete_args`, generate a flattening wrapper around the
            # original root function and return that.
            self.graph._codegen = _PyTreeCodeGen(
                _PyTreeInfo(orig_args[:total_args], in_spec, None)
            )

            def flatten_fn(*args):
                tree_args = pytree.tree_unflatten(list(args), in_spec)
                tree_out = root_fn(*tree_args)
                out_args, out_spec = pytree.tree_flatten(tree_out)
                assert isinstance(self.graph._codegen, _PyTreeCodeGen)
                self.graph._codegen.pytree_info = (
                    self.graph._codegen.pytree_info._replace(out_spec=out_spec)
                )
                return out_args

            return flatten_fn, flat_args
        return root_fn, args

    @compatibility(is_backward_compatible=True)
    def trace(

        self,

        root: Union[torch.nn.Module, Callable[..., Any]],

        concrete_args: Optional[Dict[str, Any]] = None,

    ) -> Graph:
        """

        Trace ``root`` and return the corresponding FX ``Graph`` representation. ``root``

        can either be an ``nn.Module`` instance or a Python callable.



        Note that after this call, ``self.root`` may be different from the ``root`` passed

        in here. For example, when a free function is passed to ``trace()``, we will

        create an ``nn.Module`` instance to use as the root and add embedded constants

        to.





        Args:



            root (Union[Module, Callable]): Either a ``Module`` or a function to be

                traced through. Backwards-compatibility for this parameter is

                guaranteed.

            concrete_args (Optional[Dict[str, any]]): Concrete arguments that should

                not be treated as Proxies. This parameter is experimental and

                its backwards-compatibility is *NOT* guaranteed.



        Returns:



            A ``Graph`` representing the semantics of the passed-in ``root``.

        """
        global _is_fx_tracing_flag
        old_is_fx_tracing_flag = _is_fx_tracing_flag
        _is_fx_tracing_flag = True
        try:
            if isinstance(root, torch.nn.Module):
                self.root = root

                assert hasattr(
                    type(root), self.traced_func_name
                ), f"traced_func_name={self.traced_func_name} doesn't exist in {type(root).__name__}"

                fn = getattr(type(root), self.traced_func_name)
                self.root_module_name = root._get_name()
                self.submodule_paths = {mod: name for name, mod in root.named_modules()}
            else:
                self.root = torch.nn.Module()
                fn = root

            tracer_cls: Optional[Type[Tracer]] = getattr(self, "__class__", None)
            self.graph = Graph(tracer_cls=tracer_cls)
            if hasattr(fn, '__code__'):
                code = fn.__code__
                self.graph._co_fields = {
                    'co_name': code.co_name,
                    'co_filename': code.co_filename,
                    'co_firstlineno': code.co_firstlineno,
                }

            # When we encounter a Tensor value that's not a parameter, we look if it
            # is some other attribute on the model. Construct a dict mapping Tensor
            # values to the qualified name here for efficiency. This is used downstream
            # in create_arg
            self.tensor_attrs: Dict[Union[torch.Tensor, ScriptObject], str] = {}

            def collect_tensor_attrs(m: torch.nn.Module, prefix_atoms: List[str]):
                for k, v in m.__dict__.items():
                    if isinstance(v, (torch.Tensor, ScriptObject)):
                        self.tensor_attrs[v] = ".".join(prefix_atoms + [k])
                for k, v in m.named_children():
                    collect_tensor_attrs(v, prefix_atoms + [k])

            collect_tensor_attrs(self.root, [])

            assert isinstance(fn, FunctionType)

            fn_globals = fn.__globals__  # run before it gets patched
            fn, args = self.create_args_for_root(
                fn, isinstance(root, torch.nn.Module), concrete_args
            )

            parameter_proxy_cache: Dict[
                str, Proxy
            ] = {}  # Reduce number of get_attr calls

            # Method dispatch on parameters is not recorded unless it's directly used.
            # Thus, we need to insert a proxy when __getattr__ requests a parameter.
            @functools.wraps(_orig_module_getattr)
            def module_getattr_wrapper(mod, attr):
                attr_val = _orig_module_getattr(mod, attr)
                return self.getattr(attr, attr_val, parameter_proxy_cache)

            @functools.wraps(_orig_module_call)
            def module_call_wrapper(mod, *args, **kwargs):
                def forward(*args, **kwargs):
                    return _orig_module_call(mod, *args, **kwargs)

                _autowrap_check(
                    patcher,
                    getattr(getattr(mod, "forward", mod), "__globals__", {}),
                    self._autowrap_function_ids,
                )
                return self.call_module(mod, forward, args, kwargs)

            with _Patcher() as patcher:
                # allow duplicate patches to support the case of nested calls
                patcher.patch_method(
                    torch.nn.Module,
                    "__getattr__",
                    module_getattr_wrapper,
                    deduplicate=False,
                )
                patcher.patch_method(
                    torch.nn.Module, "__call__", module_call_wrapper, deduplicate=False
                )
                _patch_wrapped_functions(patcher)
                _autowrap_check(patcher, fn_globals, self._autowrap_function_ids)
                for module in self._autowrap_search:
                    _autowrap_check(
                        patcher, module.__dict__, self._autowrap_function_ids
                    )
                self.create_node(
                    "output",
                    "output",
                    (self.create_arg(fn(*args)),),
                    {},
                    type_expr=fn.__annotations__.get("return", None),
                )

            self.submodule_paths = None
        finally:
            _is_fx_tracing_flag = old_is_fx_tracing_flag
        return self.graph

    def __deepcopy__(self, memo):
        # _autowrap_search contains modules, which cannot be deepcopied.
        new_tracer = Tracer.__new__(Tracer)

        for k, v in self.__dict__.items():
            if k in {'_autowrap_search'}:
                new_obj = copy.copy(v)
            else:
                new_obj = copy.deepcopy(v, memo)

            new_tracer.__dict__[k] = new_obj

        return new_tracer


# Dictionary of (id(globals dict), function name) => globals_dict to patch for
# the purposes of the wrap() API.
# We key by the globals dict id and function name to ensure we're wrapping a given
# function only once.
_wrapped_fns_to_patch: Dict[Tuple[int, str], dict] = {}

# List of methods on classes to wrap (class type, function name)
# this currently only works for Tensor.* methods that aren't traced properly
_wrapped_methods_to_patch: List[Tuple[type, str]] = []

if os.environ.get("FX_PATCH_GETITEM") == "1":
    # This change is needed to trace models like PositionalEmbedding from BERT:
    # https://github.com/pytorch/benchmark/blob/master/torchbenchmark/models/BERT_pytorch/bert_pytorch/model/embedding/position.py
    # but causes issues in quantization documented here:
    # https://github.com/pytorch/pytorch/issues/50710
    # once that is fixed we can make this the default behavior.
    _wrapped_methods_to_patch.append((torch.Tensor, "__getitem__"))


def _find_proxy(*objects_to_search):
    """

    Recursively search a data structure for a Proxy() and return it,

    return None if not found.

    """
    proxy = None

    def find_proxy(x):
        nonlocal proxy
        if isinstance(x, Proxy):
            proxy = x

    map_aggregate(objects_to_search, find_proxy)
    return proxy


def _create_wrapped_func(orig_fn):
    @functools.wraps(orig_fn)
    def wrapped(*args, **kwargs):
        """

        Given an closed-over ``orig_function`` to invoke, search the args and kwargs for

        a Proxy object. If there is one, emit a ``call_function`` node to preserve the

        call to this leaf function directly. Otherwise, just return the results of

        this function call, as this function is not being traced.

        """
        proxy = _find_proxy(args, kwargs)
        if proxy is not None:
            return_proxy = proxy.tracer.create_proxy(
                "call_function", orig_fn, args, kwargs
            )
            return_proxy.node.meta["is_wrapped"] = True
            return return_proxy
        return orig_fn(*args, **kwargs)

    return wrapped


def _create_wrapped_method(cls, name):
    orig_fn = getattr(cls, name)

    @functools.wraps(orig_fn)
    def wrapped(*args, **kwargs):
        """

        Search the args and kwargs for a Proxy object. If there is one,

        emit a ``call_method`` node to preserve the call to this method

        directly. Otherwise, just return the results of this function

        call, as this function is not being traced.

        """
        proxy = _find_proxy(args, kwargs)
        if proxy is not None:
            return proxy.tracer.create_proxy("call_method", name, args, kwargs)
        return orig_fn(*args, **kwargs)

    return wrapped


class _PatchedFn(NamedTuple):
    frame_dict: Any
    fn_name: str
    orig_fn: Any

    def revert(self):
        raise NotImplementedError()


class _PatchedFnSetItem(_PatchedFn):
    def revert(self):
        self.frame_dict[self.fn_name] = self.orig_fn


class _PatchedFnDel(_PatchedFn):
    def revert(self):
        del self.frame_dict[self.fn_name]


class _PatchedFnSetAttr(_PatchedFn):
    def revert(self):
        setattr(self.frame_dict, self.fn_name, self.orig_fn)


class _Patcher:
    def __init__(self):
        super().__init__()
        self.patches_made: List[_PatchedFn] = []
        self.visited: Set[int] = set()

    def patch(

        self,

        frame_dict: Dict[str, Any],

        name: str,

        new_fn: Callable,

        deduplicate: bool = True,

    ):
        """

        Replace frame_dict[name] with new_fn until we exit the context manager.

        """
        new_fn.__fx_already_patched = deduplicate  # type: ignore[attr-defined]
        if name not in frame_dict and hasattr(builtins, name):
            self.patches_made.append(_PatchedFnDel(frame_dict, name, None))
        elif getattr(frame_dict[name], "__fx_already_patched", False):
            return  # already patched, no need to do it again
        else:
            self.patches_made.append(
                _PatchedFnSetItem(frame_dict, name, frame_dict[name])
            )
        frame_dict[name] = new_fn

    def patch_method(

        self, cls: type, name: str, new_fn: Callable, deduplicate: bool = True

    ):
        """

        Replace object_or_dict.name with new_fn until we exit the context manager.

        """
        new_fn.__fx_already_patched = deduplicate  # type: ignore[attr-defined]
        orig_fn = getattr(cls, name)
        if getattr(orig_fn, "__fx_already_patched", False):
            return  # already patched, no need to do it again
        self.patches_made.append(_PatchedFnSetAttr(cls, name, orig_fn))
        setattr(cls, name, new_fn)

    def visit_once(self, thing: Any):
        """Return True on the first call to with thing, otherwise false"""
        idx = id(thing)
        if idx in self.visited:
            return False
        self.visited.add(idx)
        return True

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        """

        Undo all the changes made via self.patch() and self.patch_method()

        """
        while self.patches_made:
            # unpatch in reverse order to handle duplicates correctly
            self.patches_made.pop().revert()
        self.visited.clear()


def _patch_wrapped_functions(patcher: _Patcher):
    """

    Go through ``_wrapped_fn_patch_table`` and, for each frame object, wrap

    the listed global functions in the `_create_wrapped_func` wrapper.

    """
    for (_, name), frame_dict in _wrapped_fns_to_patch.copy().items():
        if name not in frame_dict and hasattr(builtins, name):
            orig_fn = getattr(builtins, name)
        else:
            orig_fn = frame_dict[name]
        patcher.patch(frame_dict, name, _create_wrapped_func(orig_fn))

    for cls, name in _wrapped_methods_to_patch:
        patcher.patch_method(cls, name, _create_wrapped_method(cls, name))


def _autowrap_check(

    patcher: _Patcher, frame_dict: Dict[str, Any], function_ids: Set[int]

):
    """

    Some methods, like `math.sqrt` are common enough we want to automatically wrap them as we see them.

    This method searches a scope for them and patches them if found.

    """
    if patcher.visit_once(frame_dict):
        for name, value in frame_dict.items():
            if (
                not name.startswith("_")
                and callable(value)
                and id(value) in function_ids
            ):
                patcher.patch(frame_dict, name, _create_wrapped_func(value))


@compatibility(is_backward_compatible=True)
def wrap(fn_or_name: Union[str, Callable]):
    """

    This function can be called at module-level scope to register fn_or_name as a "leaf function".

    A "leaf function" will be preserved as a CallFunction node in the FX trace instead of being

    traced through::



        # foo/bar/baz.py

        def my_custom_function(x, y):

            return x * x + y * y



        torch.fx.wrap('my_custom_function')



        def fn_to_be_traced(x, y):

            # When symbolic tracing, the below call to my_custom_function will be inserted into

            # the graph rather than tracing it.

            return my_custom_function(x, y)



    This function can also equivalently be used as a decorator::



        # foo/bar/baz.py

        @torch.fx.wrap

        def my_custom_function(x, y):

            return x * x + y * y



    A wrapped function can be thought of a "leaf function", analogous to the concept of

    "leaf modules", that is, they are functions that are left as calls in the FX trace

    rather than traced through.



    Args:



        fn_or_name (Union[str, Callable]): The function or name of the global function to insert into the

            graph when it's called

    """
    if not callable(fn_or_name) and not isinstance(fn_or_name, str):
        raise RuntimeError(
            "Unsupported type for global function! Must be either a callable or "
            "string name"
        )

    if callable(fn_or_name):
        assert not isinstance(fn_or_name, str)  # to make mypy happy
        fn_name = fn_or_name.__name__
    else:
        assert isinstance(
            fn_or_name, str
        ), "fn_or_name must be a global function or string name"
        fn_name = fn_or_name

    currentframe = inspect.currentframe()
    assert currentframe is not None
    f = currentframe.f_back
    assert f is not None
    if f.f_code.co_name != "<module>":
        raise NotImplementedError("wrap must be called at the top level of a module")

    # consider implementing Callable version of this via _autowrap_function_ids / _autowrap_search
    # semantics would be slightly different, but would add support `from x import wrapped_function`
    _wrapped_fns_to_patch[(id(f.f_globals), fn_name)] = f.f_globals
    return fn_or_name


@compatibility(is_backward_compatible=True)
def symbolic_trace(

    root: Union[torch.nn.Module, Callable[..., Any]],

    concrete_args: Optional[Dict[str, Any]] = None,

) -> GraphModule:
    """

    Symbolic tracing API



    Given an ``nn.Module`` or function instance ``root``, this function will return a ``GraphModule``

    constructed by recording operations seen while tracing through ``root``.



    ``concrete_args`` allows you to partially specialize your function, whether it's to remove control flow or data structures.



    For example::



        def f(a, b):

            if b == True:

                return a

            else:

                return a*2



    FX can typically not trace through this due to the presence of control

    flow. However, we can use `concrete_args` to specialize on the value of

    `b` to trace through this::



        f = fx.symbolic_trace(f, concrete_args={'b': False})

        assert f(3, False)  == 6



    Note that although you can still pass in different values of `b`, they will be ignored.



    We can also use `concrete_args` to eliminate data-structure handling from

    our function. This will use pytrees to flatten your input. To avoid

    overspecializing, pass in `fx.PH` for values that shouldn't be

    specialized. For example::



        def f(x):

            out = 0

            for v in x.values():

                out += v

            return out

        f = fx.symbolic_trace(f, concrete_args={'x': {'a': fx.PH, 'b': fx.PH, 'c': fx.PH}})

        assert f({'a': 1, 'b': 2, 'c': 4}) == 7





    Args:

        root (Union[torch.nn.Module, Callable]): Module or function to be traced and converted

            into a Graph representation.

        concrete_args (Optional[Dict[str, any]]): Inputs to be partially specialized



    Returns:

        GraphModule: a Module created from the recorded operations from ``root``.

    """
    tracer = Tracer()
    graph = tracer.trace(root, concrete_args)
    name = (
        root.__class__.__name__ if isinstance(root, torch.nn.Module) else root.__name__
    )
    return GraphModule(tracer.root, graph, name)


@wrap
def _assert_is_none(value, msg):
    assert value is None, msg