File size: 3,658 Bytes
b2659ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import math
from numbers import Number, Real

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import _standard_normal, broadcast_all

__all__ = ["Normal"]


class Normal(ExponentialFamily):
    r"""

    Creates a normal (also called Gaussian) distribution parameterized by

    :attr:`loc` and :attr:`scale`.



    Example::



        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0]))

        >>> m.sample()  # normally distributed with loc=0 and scale=1

        tensor([ 0.1046])



    Args:

        loc (float or Tensor): mean of the distribution (often referred to as mu)

        scale (float or Tensor): standard deviation of the distribution

            (often referred to as sigma)

    """
    arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
    support = constraints.real
    has_rsample = True
    _mean_carrier_measure = 0

    @property
    def mean(self):
        return self.loc

    @property
    def mode(self):
        return self.loc

    @property
    def stddev(self):
        return self.scale

    @property
    def variance(self):
        return self.stddev.pow(2)

    def __init__(self, loc, scale, validate_args=None):
        self.loc, self.scale = broadcast_all(loc, scale)
        if isinstance(loc, Number) and isinstance(scale, Number):
            batch_shape = torch.Size()
        else:
            batch_shape = self.loc.size()
        super().__init__(batch_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Normal, _instance)
        batch_shape = torch.Size(batch_shape)
        new.loc = self.loc.expand(batch_shape)
        new.scale = self.scale.expand(batch_shape)
        super(Normal, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    def sample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        with torch.no_grad():
            return torch.normal(self.loc.expand(shape), self.scale.expand(shape))

    def rsample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
        return self.loc + eps * self.scale

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        # compute the variance
        var = self.scale**2
        log_scale = (
            math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log()
        )
        return (
            -((value - self.loc) ** 2) / (2 * var)
            - log_scale
            - math.log(math.sqrt(2 * math.pi))
        )

    def cdf(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return 0.5 * (
            1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2))
        )

    def icdf(self, value):
        return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2)

    def entropy(self):
        return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale)

    @property
    def _natural_params(self):
        return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal())

    def _log_normalizer(self, x, y):
        return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y)