File size: 3,714 Bytes
b2659ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from numbers import Number

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all

__all__ = ["Gamma"]


def _standard_gamma(concentration):
    return torch._standard_gamma(concentration)


class Gamma(ExponentialFamily):
    r"""

    Creates a Gamma distribution parameterized by shape :attr:`concentration` and :attr:`rate`.



    Example::



        >>> # xdoctest: +IGNORE_WANT("non-deterministic")

        >>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0]))

        >>> m.sample()  # Gamma distributed with concentration=1 and rate=1

        tensor([ 0.1046])



    Args:

        concentration (float or Tensor): shape parameter of the distribution

            (often referred to as alpha)

        rate (float or Tensor): rate = 1 / scale of the distribution

            (often referred to as beta)

    """
    arg_constraints = {
        "concentration": constraints.positive,
        "rate": constraints.positive,
    }
    support = constraints.nonnegative
    has_rsample = True
    _mean_carrier_measure = 0

    @property
    def mean(self):
        return self.concentration / self.rate

    @property
    def mode(self):
        return ((self.concentration - 1) / self.rate).clamp(min=0)

    @property
    def variance(self):
        return self.concentration / self.rate.pow(2)

    def __init__(self, concentration, rate, validate_args=None):
        self.concentration, self.rate = broadcast_all(concentration, rate)
        if isinstance(concentration, Number) and isinstance(rate, Number):
            batch_shape = torch.Size()
        else:
            batch_shape = self.concentration.size()
        super().__init__(batch_shape, validate_args=validate_args)

    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(Gamma, _instance)
        batch_shape = torch.Size(batch_shape)
        new.concentration = self.concentration.expand(batch_shape)
        new.rate = self.rate.expand(batch_shape)
        super(Gamma, new).__init__(batch_shape, validate_args=False)
        new._validate_args = self._validate_args
        return new

    def rsample(self, sample_shape=torch.Size()):
        shape = self._extended_shape(sample_shape)
        value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand(
            shape
        )
        value.detach().clamp_(
            min=torch.finfo(value.dtype).tiny
        )  # do not record in autograd graph
        return value

    def log_prob(self, value):
        value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device)
        if self._validate_args:
            self._validate_sample(value)
        return (
            torch.xlogy(self.concentration, self.rate)
            + torch.xlogy(self.concentration - 1, value)
            - self.rate * value
            - torch.lgamma(self.concentration)
        )

    def entropy(self):
        return (
            self.concentration
            - torch.log(self.rate)
            + torch.lgamma(self.concentration)
            + (1.0 - self.concentration) * torch.digamma(self.concentration)
        )

    @property
    def _natural_params(self):
        return (self.concentration - 1, -self.rate)

    def _log_normalizer(self, x, y):
        return torch.lgamma(x + 1) + (x + 1) * torch.log(-y.reciprocal())

    def cdf(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return torch.special.gammainc(self.concentration, self.rate * value)