File size: 23,374 Bytes
b2659ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import copy
from typing import (
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    NoReturn,
    Sequence,
    Tuple,
    Type,
    Union,
)

import torch
import torch.nn as nn
from torch import Tensor
from torch.nn.utils._named_member_accessor import NamedMemberAccessor

# Utilities to make nn.Module "functional"
# In particular the goal is to be able to provide a function that takes as input
# the parameters and evaluate the nn.Module using fixed inputs.


def raise_parameter_tying_error() -> NoReturn:
    raise RuntimeError(
        "make_functional(module): we don't yet support models that "
        "do parameter tying (also sometimes known as weight sharing). "
        "Please try to rewrite your model by replacing all instances of the "
        "tied parameter with another and/or comment your support in "
        "https://github.com/pytorch/functorch/issues/446"
    )


def create_names_map(

    named_params: Union[Dict[str, Tensor], Iterable[Tuple[str, Tensor]]],

    tied_named_params: Union[Dict[str, Tensor], Iterable[Tuple[str, Tensor]]],

) -> Dict[str, List[str]]:
    """

    named_params is a dictionary of tensors: {'A': A, 'B': B}

    tied_named_params is another dictionary of tensors {'A': A, 'B': B, 'B_tied': B}

    with potentially tied (or 'duplicated') tensors



    This function creates a mapping from the names in named_params to the

    names in tied_named_params: {'A': ['A'], 'B': ['B', 'B_tied']}.

    """
    named_params = dict(named_params)
    tied_named_params = dict(tied_named_params)

    tensors_dict_keys = set(named_params.keys())
    tied_tensors_dict_keys = set(tied_named_params.keys())
    assert tensors_dict_keys.issubset(tied_tensors_dict_keys)

    tensor_to_mapping: Dict[Tensor, Tuple[str, List[str]]] = {}
    for key, tensor in named_params.items():
        tensor_to_mapping[tensor] = (key, [])
    for key, tensor in tied_named_params.items():
        assert tensor in tensor_to_mapping
        tensor_to_mapping[tensor][1].append(key)
    return dict(tensor_to_mapping.values())


def _extract_members(

    mod: nn.Module,

    named_members: Callable[..., Iterable[Tuple[str, Tensor]]],

    subclass: Callable[[Tensor], Tensor],

) -> Tuple[Tuple[Tensor, ...], Tuple[str, ...], Dict[str, List[str]]]:
    all_named_members = tuple(named_members(remove_duplicate=False))
    unique_named_members = tuple(named_members(remove_duplicate=True))
    names_map = create_names_map(unique_named_members, all_named_members)

    # Remove all the members in the model
    memo = {}
    accessor = NamedMemberAccessor(mod)
    for name, p in all_named_members:
        if p not in memo:
            memo[p] = subclass(torch.empty_like(p, device="meta"))
        replacement = memo[p]
        accessor.set_tensor(name, replacement)

    if len(unique_named_members) == 0:
        names, params = (), ()
    else:
        names, params = zip(*unique_named_members)  # type: ignore[assignment]
    return params, names, names_map


def extract_weights(

    mod: nn.Module,

) -> Tuple[Tuple[Tensor, ...], Tuple[str, ...], Dict[str, List[str]]]:
    """

    This function removes all the Parameters from the model and

    return them as a tuple as well as their original attribute names.

    The weights must be re-loaded with `load_weights` before the model

    can be used again.

    Note that this function modifies the model in place and after this

    call, mod.parameters() will be empty.

    """
    return _extract_members(mod, mod.named_parameters, nn.Parameter)


def extract_buffers(

    mod: nn.Module,

) -> Tuple[Tuple[Tensor, ...], Tuple[str, ...], Dict[str, List[str]]]:
    return _extract_members(mod, mod.named_buffers, lambda x: x)


def load_weights(

    mod: nn.Module,

    names: Sequence[str],

    params: Sequence[Tensor],

    as_params: bool = False,

) -> None:
    """

    Reload a set of weights so that `mod` can be used again to perform a forward pass.

    Note that the `params` are regular Tensors (that can have history) and so are left

    as Tensors. This means that mod.parameters() will still be empty after this call.

    """
    accessor = NamedMemberAccessor(mod)
    if as_params:
        params = [nn.Parameter(p) for p in params]
    accessor.set_tensors(names, params)


def _swap_state(

    mod: nn.Module, names_map: Dict[str, List[str]], elems: Iterable[Tensor]

) -> List[Tensor]:
    result: List[Tensor] = []
    accessor = NamedMemberAccessor(mod)
    for (_, attr_names), elem in zip(names_map.items(), elems):
        for i, attr_name in enumerate(attr_names):
            if i == 0:
                result.append(accessor.swap_tensor(attr_name, elem))
            else:
                accessor.set_tensor(attr_name, elem)
    return result


def load_buffers(

    mod: nn.Module,

    names: Sequence[str],

    buffers: Sequence[Tensor],

    as_params: bool = False,

) -> None:
    accessor = NamedMemberAccessor(mod)
    accessor.set_tensors(names, buffers)


def load_state(

    model: nn.Module,

    weights: Sequence[Tensor],

    weight_names: Sequence[str],

    buffers: Sequence[Tensor] = (),

    buffer_names: Sequence[str] = (),

) -> nn.Module:
    """load_state(model, weights, weight_names, buffers=(), buffer_names=()) -> model



    load_state takes `weights` and `buffers` and assigns them to the model.

    This is the inverse operation of `make_functional_deprecated_v1`.

    """
    assert len(weight_names) == len(weights)
    load_weights(model, weight_names, weights)
    if len(buffers) > 0:
        assert len(buffer_names) == len(buffers)
        load_buffers(model, buffer_names, buffers)
    return model


def make_functional_deprecated_v1(model: nn.Module):
    """make_functional_deprecated_v1(model) -> weights, func, weight_names



    Given an nn.Module, make_functional_deprecated_v1 extracts the state (weights)

    and returns a functional version of the model, `func`. This makes

    it so that it is possible use transforms over the parameters of

    `model`.



    `func` can be invoked as follows:

    ```

    x = torch.randn(4, 3)

    model = nn.Linear(3, 3)

    weights, func, _ = make_functional_deprecated_v1(model)

    func(weights, (x,))

    ```



    And here is an example of applying the grad transform:

    ```

    x = torch.randn(4, 3)

    model = nn.Linear(3, 3)

    weights, _, func = make_functional_deprecated_v1(model)

    grad_weights = grad(func)(weights, (x,))

    ```



    To put the state back into a model, use `load_state`.

    """
    buffers = list(model.buffers())
    if len(buffers) > 0:
        raise RuntimeError(
            "make_functional_deprecated_v1(model): `model` has buffers. Please use "
            "make_functional_with_buffers_deprecated_v1(model) instead."
        )
    weights, descriptors, _ = extract_weights(model)

    def fun(weights, data):
        mutable_model = copy.deepcopy(model)
        load_weights(mutable_model, descriptors, weights)
        return mutable_model(*data)

    return weights, fun, descriptors


def make_functional_with_buffers_deprecated_v1(model: nn.Module):
    """make_functional_with_buffers_deprecated_v1(model) -> weights, buffers, func, weight_names, buffer_names



    Given an nn.Module, make_functional_with_buffers_deprecated_v1 extracts the state (weights and buffers)

    and returns a functional version of the model, `func`.



    `func` can be invoked as follows:

    ```

    x = torch.randn(4, 3)

    model = nn.Linear(3, 3)

    weights, buffers, func, _, _ = make_functional_with_buffers_deprecated_v1(model)

    func(weights, buffers, (x,))

    ```



    And here is an example of applying the grad transform:

    ```

    x = torch.randn(4, 3)

    model = nn.Linear(3, 3)

    weights, buffers, func, _, _ = make_functional_with_buffers_deprecated_v1(model)

    func(weights, buffers, (x,))

    grad_weights = grad(func)(weights, buffers, (x,))

    ```



    To put the state back into a model, use `load_state`.

    """
    weights, weight_descriptors, _ = extract_weights(model)
    buffers, buf_descriptors, _ = extract_buffers(model)

    def fun(weights, buffers, data):
        mutable_model = copy.deepcopy(model)
        load_weights(mutable_model, weight_descriptors, weights)
        load_buffers(mutable_model, buf_descriptors, buffers)
        return mutable_model(*data)

    return weights, buffers, fun, weight_descriptors, buf_descriptors


class FunctionalModuleWithBuffers(nn.Module):
    """

    This is the callable object returned by :func:`make_functional_with_buffers`.

    """

    def __init__(

        self,

        stateless_model: nn.Module,

        param_names: Tuple[str, ...],

        buffer_names: Tuple[str, ...],

        param_names_map: Dict[str, List[str]],

        buffer_names_map: Dict[str, List[str]],

    ) -> None:
        super().__init__()
        self.stateless_model = stateless_model
        self.param_names = param_names
        self.buffer_names = buffer_names

        self.all_names_map = dict(param_names_map)
        self.all_names_map.update(buffer_names_map)

    @staticmethod
    def _create_from(

        model: nn.Module, disable_autograd_tracking: bool = False

    ) -> Tuple["FunctionalModuleWithBuffers", Tuple[Tensor, ...], Tuple[Tensor, ...]]:
        # TODO: We don't need to copy the model to create a stateless copy
        model_copy = copy.deepcopy(model)
        params, param_names, param_names_map = extract_weights(model_copy)
        buffers, buffer_names, buffer_names_map = extract_buffers(model_copy)
        if disable_autograd_tracking:
            for param in params:
                param.requires_grad_(False)
        return (
            FunctionalModuleWithBuffers(
                model_copy, param_names, buffer_names, param_names_map, buffer_names_map
            ),
            params,
            buffers,
        )

    def forward(

        self, params: Iterable[Tensor], buffers: Iterable[Tensor], *args, **kwargs

    ) -> Any:
        # Temporarily load the state back onto self.stateless_model
        old_state = _swap_state(
            self.stateless_model,
            self.all_names_map,
            tuple(params) + tuple(buffers),
        )
        try:
            return self.stateless_model(*args, **kwargs)
        finally:
            # Remove the loaded state on self.stateless_model
            _swap_state(self.stateless_model, self.all_names_map, old_state)


class FunctionalModule(nn.Module):
    """

    This is the callable object returned by :func:`make_functional`.

    """

    def __init__(

        self,

        stateless_model: nn.Module,

        param_names: Tuple[str, ...],

        names_map: Dict[str, List[str]],

    ) -> None:
        super().__init__()
        self.stateless_model = stateless_model
        self.param_names = param_names
        self.names_map = names_map

    @staticmethod
    def _create_from(

        model: nn.Module, disable_autograd_tracking: bool = False

    ) -> Tuple["FunctionalModule", Tuple[Tensor, ...]]:
        # TODO: We don't need to copy the model to create a stateless copy
        model_copy = copy.deepcopy(model)
        params, param_names, names_map = extract_weights(model_copy)
        if disable_autograd_tracking:
            for param in params:
                param.requires_grad_(False)
        return FunctionalModule(model_copy, param_names, names_map), params

    def forward(self, params: Iterable[Tensor], *args, **kwargs) -> Any:
        # Temporarily load the state back onto self.stateless_model
        old_state = _swap_state(self.stateless_model, self.names_map, params)
        try:
            return self.stateless_model(*args, **kwargs)
        finally:
            # Remove the loaded state on self.stateless_model
            _swap_state(self.stateless_model, self.names_map, old_state)


def make_functional(

    model: nn.Module, disable_autograd_tracking: bool = False

) -> Tuple[FunctionalModule, Tuple[Tensor, ...]]:
    """make_functional(model, disable_autograd_tracking=False) -> func, params



    Given a ``torch.nn.Module``, :func:`make_functional` extracts the state

    (params) and returns a functional version of the model, ``func``. This

    makes it so that it is possible use transforms over the parameters of

    ``model``.



    ``func`` can be invoked as follows:



    .. code-block:: python



        import torch

        import torch.nn as nn

        from functorch import make_functional



        x = torch.randn(4, 3)

        model = nn.Linear(3, 3)

        func, params = make_functional(model)

        func(params, x)



    And here is an example of applying the grad transform over the parameters

    of a model.



    .. code-block:: python



        import torch

        import torch.nn as nn

        from functorch import make_functional, grad



        x = torch.randn(4, 3)

        t = torch.randn(4, 3)

        model = nn.Linear(3, 3)

        func, params = make_functional(model)



        def compute_loss(params, x, t):

            y = func(params, x)

            return nn.functional.mse_loss(y, t)



        grad_weights = grad(compute_loss)(params, x, t)



    If the model has any buffers, please use :func:`make_functional_with_buffers` instead.



    Args:

        model (torch.nn.Module): Input model.

        disable_autograd_tracking (bool): Flag to disable gradients tracking for output parameters.

            The returned params are unrelated to the set of params from the original model. If False (default),

            the params will have ``requires_grad=True`` on them (aka they will be trackable with regular

            PyTorch autograd), matching the requires_grad-ness of the params from the original model.

            Otherwise, the returned params will have ``requires_grad=False``. Default, False.

            If you plan on using regular PyTorch autograd (e.g., if you want to call ``.backward()`` or

            ``torch.autograd.grad()``, then set ``disable_autograd_tracking=False``.

            Otherwise, if you're only planning on using functorch's gradient transforms,

            then please set ``disable_autograd_tracking=True`` to avoid unnecessarily tracking

            history with PyTorch autograd.



    """
    buffers = list(model.buffers())
    if len(buffers) > 0:
        raise RuntimeError(
            "make_functional(model): `model` has buffers. Please use "
            "make_functional_with_buffers(model) instead."
        )
    return FunctionalModule._create_from(
        model, disable_autograd_tracking=disable_autograd_tracking
    )


def make_functional_with_buffers(

    model: nn.Module, disable_autograd_tracking: bool = False

) -> Tuple[FunctionalModuleWithBuffers, Tuple[Tensor, ...], Tuple[Tensor, ...]]:
    """make_functional_with_buffers(model, disable_autograd_tracking=False) -> func, params, buffers



    Given a ``torch.nn.Module``, make_functional_with_buffers extracts the

    state (params and buffers) and returns a functional version of the model

    ``func`` that can be invoked like a function.



    ``func`` can be invoked as follows:



    .. code-block:: python



        import torch

        import torch.nn as nn

        from functorch import make_functional_with_buffers



        x = torch.randn(4, 3)

        model = nn.Linear(3, 3)

        func, params, buffers = make_functional_with_buffers(model)

        func(params, buffers, x)



    And here is an example of applying the grad transform over the parameters

    of a model:



    .. code-block:: python



        import torch

        import torch.nn as nn

        from functorch import make_functional_with_buffers, grad



        x = torch.randn(4, 3)

        t = torch.randn(4, 3)

        model = nn.Linear(3, 3)

        func, params, buffers = make_functional_with_buffers(model)



        def compute_loss(params, buffers, x, t):

            y = func(params, buffers, x)

            return nn.functional.mse_loss(y, t)



        grad_weights = grad(compute_loss)(params, buffers, x, t)



    Args:

        model (torch.nn.Module): Input model.

        disable_autograd_tracking (bool): Flag to disable gradients tracking for output parameters.

            The returned params are unrelated to the set of params from the original model. If False (default),

            the params will have ``requires_grad=True`` on them (aka they will be trackable with regular

            PyTorch autograd), matching the requires_grad-ness of the params from the original model.

            Otherwise, the returned params will have ``requires_grad=False``. Default, False.

            If you plan on using regular PyTorch autograd (e.g., if you want to call ``.backward()`` or

            ``torch.autograd.grad()``, then set ``disable_autograd_tracking=False``.

            Otherwise, if you're only planning on using functorch's gradient transforms,

            then please set ``disable_autograd_tracking=True`` to avoid unnecessarily tracking

            history with PyTorch autograd.



    """
    return FunctionalModuleWithBuffers._create_from(
        model, disable_autograd_tracking=disable_autograd_tracking
    )


def transpose_stack(

    tuple_of_tuple_of_tensors: Tuple[Tuple[Tensor, ...], ...]

) -> Tuple[Tensor, ...]:
    tuple_of_tuple_of_tensors = tuple(zip(*tuple_of_tuple_of_tensors))
    results = tuple(
        torch.stack(shards).detach() for shards in tuple_of_tuple_of_tensors
    )
    return results


def combine_state_for_ensemble(

    models: Sequence[nn.Module],

) -> Tuple[FunctionalModuleWithBuffers, Tuple[Tensor, ...], Tuple[Tensor, ...]]:
    """combine_state_for_ensemble(models) -> func, params, buffers



    Prepares a list of torch.nn.Modules for ensembling with :func:`vmap`.



    Given a list of ``M`` ``nn.Modules`` of the same class, stacks all of their

    parameters and buffers together to make ``params`` and ``buffers``.

    Each parameter and buffer in the result will have an additional dimension

    of size ``M``.



    :func:`combine_state_for_ensemble` also returns ``func``, a functional

    version of one of the models in :attr:`models`. One cannot directly run

    ``func(params, buffers, *args, **kwargs)`` directly, you probably want to

    use ``vmap(func, ...)(params, buffers, *args, **kwargs)``



    Here's an example of how to ensemble over a very simple model:



    .. code-block:: python



        num_models = 5

        batch_size = 64

        in_features, out_features = 3, 3

        models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]

        data = torch.randn(batch_size, 3)



        fmodel, params, buffers = combine_state_for_ensemble(models)

        output = vmap(fmodel, (0, 0, None))(params, buffers, data)



        assert output.shape == (num_models, batch_size, out_features)



    .. warning::

        All of the modules being stacked together must be the same (except for

        the values of their parameters/buffers). For example, they should be in the

        same mode (training vs eval).



        This API is subject to change -- we're investigating better ways to

        create ensembles and would love your feedback how to improve this.

    """
    if len(models) == 0:
        raise RuntimeError(
            "combine_state_for_ensemble: Expected at least one model, got 0."
        )
    if not (all(m.training for m in models) or all(not m.training for m in models)):
        raise RuntimeError(
            "combine_state_for_ensemble: Expected all models to "
            "have the same training/eval mode."
        )
    model0_typ = type(models[0])
    if not all(type(m) == model0_typ for m in models):
        raise RuntimeError(
            "combine_state_for_ensemble: Expected all models to be of the same class."
        )
    funcs, params, buffers = zip(
        *[make_functional_with_buffers(model) for model in models]
    )
    params = transpose_stack(params)
    buffers = transpose_stack(buffers)
    return funcs[0], params, buffers


def functional_init(

    model_class: Type[nn.Module],

    ensemble_shape: Union[Tuple[()], Tuple[int]] = (),

    device: torch.types.Device = "cpu",

):
    def wrapped(*args, **kwargs):
        if len(ensemble_shape) >= 2:
            raise ValueError("NYI: ensemble_shape with more than 1 element")
        if len(ensemble_shape) == 0:
            model = model_class(*args, **kwargs).to(device)
            return make_functional_deprecated_v1(model)
        num_models = ensemble_shape[0]  # type: ignore[misc]
        if num_models <= 0:
            raise ValueError(f"num_models {num_models} should be > 0")
        # NB: Not very efficient, more of a POC
        models = tuple(
            model_class(*args, **kwargs).to(device) for _ in range(num_models)
        )
        _, fn, names = make_functional_deprecated_v1(model_class(*args, **kwargs))
        weights = tuple(make_functional_deprecated_v1(model)[0] for model in models)
        weights = tuple(zip(*weights))
        weights = tuple(torch.stack(shards).detach() for shards in weights)
        return weights, fn, names

    return wrapped


def functional_init_with_buffers(

    model_class: Type[nn.Module],

    ensemble_shape: Union[Tuple[()], Tuple[int]] = (),

    device: torch.types.Device = "cpu",

):
    def wrapped(*args, **kwargs):
        if len(ensemble_shape) >= 2:
            raise ValueError("NYI: ensemble_shape with more than 1 element")
        if len(ensemble_shape) == 0:
            model = model_class(*args, **kwargs).to(device)
            return make_functional_deprecated_v1(model)
        num_models = ensemble_shape[0]  # type: ignore[misc]
        if num_models <= 0:
            raise ValueError(f"num_models {num_models} should be > 0")
        # NB: Not very efficient, more of a POC
        models = tuple(
            model_class(*args, **kwargs).to(device) for _ in range(num_models)
        )
        (
            _,
            _,
            fn,
            weight_names,
            buffer_names,
        ) = make_functional_with_buffers_deprecated_v1(model_class(*args, **kwargs))
        weights, buffers = zip(
            *tuple(
                make_functional_with_buffers_deprecated_v1(model)[:2]
                for model in models
            )
        )
        weights = tuple(zip(*weights))
        weights = tuple(torch.stack(shards).detach() for shards in weights)
        buffers = tuple(zip(*buffers))
        buffers = tuple(torch.stack(shards).detach() for shards in buffers)
        return weights, buffers, fn, weight_names, buffer_names

    return wrapped