Spaces:
Runtime error
Runtime error
File size: 8,000 Bytes
b3478e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import argparse
import torch
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter, StyleAdapter, Adapter_light
from ldm.modules.extra_condition.api import ExtraCondition
from ldm.util import fix_cond_shapes, load_model_from_config, read_state_dict
DEFAULT_NEGATIVE_PROMPT = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
'fewer digits, cropped, worst quality, low quality'
def get_base_argument_parser() -> argparse.ArgumentParser:
"""get the base argument parser for inference scripts"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--outdir',
type=str,
help='dir to write results to',
default=None,
)
parser.add_argument(
'--prompt',
type=str,
nargs='?',
default=None,
help='positive prompt',
)
parser.add_argument(
'--neg_prompt',
type=str,
default=DEFAULT_NEGATIVE_PROMPT,
help='negative prompt',
)
parser.add_argument(
'--cond_path',
type=str,
default=None,
help='condition image path',
)
parser.add_argument(
'--cond_inp_type',
type=str,
default='image',
help='the type of the input condition image, take depth T2I as example, the input can be raw image, '
'which depth will be calculated, or the input can be a directly a depth map image',
)
parser.add_argument(
'--sampler',
type=str,
default='ddim',
choices=['ddim', 'plms'],
help='sampling algorithm, currently, only ddim and plms are supported, more are on the way',
)
parser.add_argument(
'--steps',
type=int,
default=50,
help='number of sampling steps',
)
parser.add_argument(
'--sd_ckpt',
type=str,
default='models/sd-v1-4.ckpt',
help='path to checkpoint of stable diffusion model, both .ckpt and .safetensor are supported',
)
parser.add_argument(
'--vae_ckpt',
type=str,
default=None,
help='vae checkpoint, anime SD models usually have seperate vae ckpt that need to be loaded',
)
parser.add_argument(
'--adapter_ckpt',
type=str,
default=None,
help='path to checkpoint of adapter',
)
parser.add_argument(
'--config',
type=str,
default='configs/stable-diffusion/sd-v1-inference.yaml',
help='path to config which constructs SD model',
)
parser.add_argument(
'--max_resolution',
type=float,
default=512 * 512,
help='max image height * width, only for computer with limited vram',
)
parser.add_argument(
'--resize_short_edge',
type=int,
default=None,
help='resize short edge of the input image, if this arg is set, max_resolution will not be used',
)
parser.add_argument(
'--C',
type=int,
default=4,
help='latent channels',
)
parser.add_argument(
'--f',
type=int,
default=8,
help='downsampling factor',
)
parser.add_argument(
'--scale',
type=float,
default=7.5,
help='unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))',
)
parser.add_argument(
'--cond_tau',
type=float,
default=1.0,
help='timestamp parameter that determines until which step the adapter is applied, '
'similar as Prompt-to-Prompt tau')
parser.add_argument(
'--cond_weight',
type=float,
default=1.0,
help='the adapter features are multiplied by the cond_weight. The larger the cond_weight, the more aligned '
'the generated image and condition will be, but the generated quality may be reduced',
)
parser.add_argument(
'--seed',
type=int,
default=42,
)
parser.add_argument(
'--n_samples',
type=int,
default=4,
help='# of samples to generate',
)
return parser
def get_sd_models(opt):
"""
build stable diffusion model, sampler
"""
# SD
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, opt.sd_ckpt, opt.vae_ckpt)
sd_model = model.to(opt.device)
# sampler
if opt.sampler == 'plms':
sampler = PLMSSampler(model)
elif opt.sampler == 'ddim':
sampler = DDIMSampler(model)
else:
raise NotImplementedError
return sd_model, sampler
def get_t2i_adapter_models(opt):
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, opt.sd_ckpt, opt.vae_ckpt)
adapter_ckpt_path = getattr(opt, f'{opt.which_cond}_adapter_ckpt', None)
if adapter_ckpt_path is None:
adapter_ckpt_path = getattr(opt, 'adapter_ckpt')
adapter_ckpt = read_state_dict(adapter_ckpt_path)
new_state_dict = {}
for k, v in adapter_ckpt.items():
if not k.startswith('adapter.'):
new_state_dict[f'adapter.{k}'] = v
else:
new_state_dict[k] = v
m, u = model.load_state_dict(new_state_dict, strict=False)
if len(u) > 0:
print(f"unexpected keys in loading adapter ckpt {adapter_ckpt_path}:")
print(u)
model = model.to(opt.device)
# sampler
if opt.sampler == 'plms':
sampler = PLMSSampler(model)
elif opt.sampler == 'ddim':
sampler = DDIMSampler(model)
else:
raise NotImplementedError
return model, sampler
def get_cond_ch(cond_type: ExtraCondition):
if cond_type == ExtraCondition.sketch or cond_type == ExtraCondition.canny:
return 1
return 3
def get_adapters(opt, cond_type: ExtraCondition):
adapter = {}
cond_weight = getattr(opt, f'{cond_type.name}_weight', None)
if cond_weight is None:
cond_weight = getattr(opt, 'cond_weight')
adapter['cond_weight'] = cond_weight
if cond_type == ExtraCondition.style:
adapter['model'] = StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8).to(opt.device)
elif cond_type == ExtraCondition.color:
adapter['model'] = Adapter_light(
cin=64 * get_cond_ch(cond_type),
channels=[320, 640, 1280, 1280],
nums_rb=4).to(opt.device)
else:
adapter['model'] = Adapter(
cin=64 * get_cond_ch(cond_type),
channels=[320, 640, 1280, 1280][:4],
nums_rb=2,
ksize=1,
sk=True,
use_conv=False).to(opt.device)
ckpt_path = getattr(opt, f'{cond_type.name}_adapter_ckpt', None)
if ckpt_path is None:
ckpt_path = getattr(opt, 'adapter_ckpt')
adapter['model'].load_state_dict(torch.load(ckpt_path))
return adapter
def diffusion_inference(opt, model, sampler, adapter_features, append_to_context=None):
# get text embedding
c = model.get_learned_conditioning([opt.prompt])
if opt.scale != 1.0:
uc = model.get_learned_conditioning([opt.neg_prompt])
else:
uc = None
c, uc = fix_cond_shapes(model, c, uc)
if not hasattr(opt, 'H'):
opt.H = 512
opt.W = 512
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_latents, _ = sampler.sample(
S=opt.steps,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
x_T=None,
features_adapter=adapter_features,
append_to_context=append_to_context,
cond_tau=opt.cond_tau,
)
x_samples = model.decode_first_stage(samples_latents)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
return x_samples
|