File size: 18,027 Bytes
1682daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright (c) SenseTime Research. All rights reserved.

# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html

"""Helper wrapper for a Tensorflow optimizer."""

import numpy as np
import tensorflow as tf

from collections import OrderedDict
from typing import List, Union

from . import autosummary
from . import tfutil
from .. import util

from .tfutil import TfExpression, TfExpressionEx

try:
    # TensorFlow 1.13
    from tensorflow.python.ops import nccl_ops
except:
    # Older TensorFlow versions
    import tensorflow.contrib.nccl as nccl_ops

class Optimizer:
    """A Wrapper for tf.train.Optimizer.

    Automatically takes care of:
    - Gradient averaging for multi-GPU training.
    - Gradient accumulation for arbitrarily large minibatches.
    - Dynamic loss scaling and typecasts for FP16 training.
    - Ignoring corrupted gradients that contain NaNs/Infs.
    - Reporting statistics.
    - Well-chosen default settings.
    """

    def __init__(self,
        name:                   str             = "Train",                  # Name string that will appear in TensorFlow graph.
        tf_optimizer:           str             = "tf.train.AdamOptimizer", # Underlying optimizer class.
        learning_rate:          TfExpressionEx  = 0.001,                    # Learning rate. Can vary over time.
        minibatch_multiplier:   TfExpressionEx  = None,                     # Treat N consecutive minibatches as one by accumulating gradients.
        share:                  "Optimizer"     = None,                     # Share internal state with a previously created optimizer?
        use_loss_scaling:       bool            = False,                    # Enable dynamic loss scaling for robust mixed-precision training?
        loss_scaling_init:      float           = 64.0,                     # Log2 of initial loss scaling factor.
        loss_scaling_inc:       float           = 0.0005,                   # Log2 of per-minibatch loss scaling increment when there is no overflow.
        loss_scaling_dec:       float           = 1.0,                      # Log2 of per-minibatch loss scaling decrement when there is an overflow.
        report_mem_usage:       bool            = False,                    # Report fine-grained memory usage statistics in TensorBoard?
        **kwargs):

        # Public fields.
        self.name                   = name
        self.learning_rate          = learning_rate
        self.minibatch_multiplier   = minibatch_multiplier
        self.id                     = self.name.replace("/", ".")
        self.scope                  = tf.get_default_graph().unique_name(self.id)
        self.optimizer_class        = util.get_obj_by_name(tf_optimizer)
        self.optimizer_kwargs       = dict(kwargs)
        self.use_loss_scaling       = use_loss_scaling
        self.loss_scaling_init      = loss_scaling_init
        self.loss_scaling_inc       = loss_scaling_inc
        self.loss_scaling_dec       = loss_scaling_dec

        # Private fields.
        self._updates_applied       = False
        self._devices               = OrderedDict() # device_name => EasyDict()
        self._shared_optimizers     = OrderedDict() # device_name => optimizer_class
        self._gradient_shapes       = None          # [shape, ...]
        self._report_mem_usage      = report_mem_usage

        # Validate arguments.
        assert callable(self.optimizer_class)

        # Share internal state if requested.
        if share is not None:
            assert isinstance(share, Optimizer)
            assert self.optimizer_class is share.optimizer_class
            assert self.learning_rate is share.learning_rate
            assert self.optimizer_kwargs == share.optimizer_kwargs
            self._shared_optimizers = share._shared_optimizers # pylint: disable=protected-access

    def _get_device(self, device_name: str):
        """Get internal state for the given TensorFlow device."""
        tfutil.assert_tf_initialized()
        if device_name in self._devices:
            return self._devices[device_name]

        # Initialize fields.
        device = util.EasyDict()
        device.name             = device_name
        device.optimizer        = None          # Underlying optimizer:     optimizer_class
        device.loss_scaling_var = None          # Log2 of loss scaling:     tf.Variable
        device.grad_raw         = OrderedDict() # Raw gradients:            var => [grad, ...]
        device.grad_clean       = OrderedDict() # Clean gradients:          var => grad
        device.grad_acc_vars    = OrderedDict() # Accumulation sums:        var => tf.Variable
        device.grad_acc_count   = None          # Accumulation counter:     tf.Variable
        device.grad_acc         = OrderedDict() # Accumulated gradients:    var => grad

        # Setup TensorFlow objects.
        with tfutil.absolute_name_scope(self.scope + "/Devices"), tf.device(device_name), tf.control_dependencies(None):
            if device_name not in self._shared_optimizers:
                optimizer_name = self.scope.replace("/", "_") + "_opt%d" % len(self._shared_optimizers)
                self._shared_optimizers[device_name] = self.optimizer_class(name=optimizer_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
            device.optimizer = self._shared_optimizers[device_name]
            if self.use_loss_scaling:
                device.loss_scaling_var = tf.Variable(np.float32(self.loss_scaling_init), trainable=False, name="loss_scaling_var")

        # Register device.
        self._devices[device_name] = device
        return device

    def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
        """Register the gradients of the given loss function with respect to the given variables.
        Intended to be called once per GPU."""
        tfutil.assert_tf_initialized()
        assert not self._updates_applied
        device = self._get_device(loss.device)

        # Validate trainables.
        if isinstance(trainable_vars, dict):
            trainable_vars = list(trainable_vars.values())  # allow passing in Network.trainables as vars
        assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
        assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
        assert all(var.device == device.name for var in trainable_vars)

        # Validate shapes.
        if self._gradient_shapes is None:
            self._gradient_shapes = [var.shape.as_list() for var in trainable_vars]
        assert len(trainable_vars) == len(self._gradient_shapes)
        assert all(var.shape.as_list() == var_shape for var, var_shape in zip(trainable_vars, self._gradient_shapes))

        # Report memory usage if requested.
        deps = []
        if self._report_mem_usage:
            self._report_mem_usage = False
            try:
                with tf.name_scope(self.id + '_mem'), tf.device(device.name), tf.control_dependencies([loss]):
                    deps.append(autosummary.autosummary(self.id + "/mem_usage_gb", tf.contrib.memory_stats.BytesInUse() / 2**30))
            except tf.errors.NotFoundError:
                pass

        # Compute gradients.
        with tf.name_scope(self.id + "_grad"), tf.device(device.name), tf.control_dependencies(deps):
            loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
            gate = tf.train.Optimizer.GATE_NONE  # disable gating to reduce memory usage
            grad_list = device.optimizer.compute_gradients(loss=loss, var_list=trainable_vars, gate_gradients=gate)

        # Register gradients.
        for grad, var in grad_list:
            if var not in device.grad_raw:
                device.grad_raw[var] = []
            device.grad_raw[var].append(grad)

    def apply_updates(self, allow_no_op: bool = False) -> tf.Operation:
        """Construct training op to update the registered variables based on their gradients."""
        tfutil.assert_tf_initialized()
        assert not self._updates_applied
        self._updates_applied = True
        all_ops = []

        # Check for no-op.
        if allow_no_op and len(self._devices) == 0:
            with tfutil.absolute_name_scope(self.scope):
                return tf.no_op(name='TrainingOp')

        # Clean up gradients.
        for device_idx, device in enumerate(self._devices.values()):
            with tfutil.absolute_name_scope(self.scope + "/Clean%d" % device_idx), tf.device(device.name):
                for var, grad in device.grad_raw.items():

                    # Filter out disconnected gradients and convert to float32.
                    grad = [g for g in grad if g is not None]
                    grad = [tf.cast(g, tf.float32) for g in grad]

                    # Sum within the device.
                    if len(grad) == 0:
                        grad = tf.zeros(var.shape)  # No gradients => zero.
                    elif len(grad) == 1:
                        grad = grad[0]              # Single gradient => use as is.
                    else:
                        grad = tf.add_n(grad)       # Multiple gradients => sum.

                    # Scale as needed.
                    scale = 1.0 / len(device.grad_raw[var]) / len(self._devices)
                    scale = tf.constant(scale, dtype=tf.float32, name="scale")
                    if self.minibatch_multiplier is not None:
                        scale /= tf.cast(self.minibatch_multiplier, tf.float32)
                    scale = self.undo_loss_scaling(scale)
                    device.grad_clean[var] = grad * scale

        # Sum gradients across devices.
        if len(self._devices) > 1:
            with tfutil.absolute_name_scope(self.scope + "/Broadcast"), tf.device(None):
                for all_vars in zip(*[device.grad_clean.keys() for device in self._devices.values()]):
                    if len(all_vars) > 0 and all(dim > 0 for dim in all_vars[0].shape.as_list()): # NCCL does not support zero-sized tensors.
                        all_grads = [device.grad_clean[var] for device, var in zip(self._devices.values(), all_vars)]
                        all_grads = nccl_ops.all_sum(all_grads)
                        for device, var, grad in zip(self._devices.values(), all_vars, all_grads):
                            device.grad_clean[var] = grad

        # Apply updates separately on each device.
        for device_idx, device in enumerate(self._devices.values()):
            with tfutil.absolute_name_scope(self.scope + "/Apply%d" % device_idx), tf.device(device.name):
                # pylint: disable=cell-var-from-loop

                # Accumulate gradients over time.
                if self.minibatch_multiplier is None:
                    acc_ok = tf.constant(True, name='acc_ok')
                    device.grad_acc = OrderedDict(device.grad_clean)
                else:
                    # Create variables.
                    with tf.control_dependencies(None):
                        for var in device.grad_clean.keys():
                            device.grad_acc_vars[var] = tf.Variable(tf.zeros(var.shape), trainable=False, name="grad_acc_var")
                        device.grad_acc_count = tf.Variable(tf.zeros([]), trainable=False, name="grad_acc_count")

                    # Track counter.
                    count_cur = device.grad_acc_count + 1.0
                    count_inc_op = lambda: tf.assign(device.grad_acc_count, count_cur)
                    count_reset_op = lambda: tf.assign(device.grad_acc_count, tf.zeros([]))
                    acc_ok = (count_cur >= tf.cast(self.minibatch_multiplier, tf.float32))
                    all_ops.append(tf.cond(acc_ok, count_reset_op, count_inc_op))

                    # Track gradients.
                    for var, grad in device.grad_clean.items():
                        acc_var = device.grad_acc_vars[var]
                        acc_cur = acc_var + grad
                        device.grad_acc[var] = acc_cur
                        with tf.control_dependencies([acc_cur]):
                            acc_inc_op = lambda: tf.assign(acc_var, acc_cur)
                            acc_reset_op = lambda: tf.assign(acc_var, tf.zeros(var.shape))
                            all_ops.append(tf.cond(acc_ok, acc_reset_op, acc_inc_op))

                # No overflow => apply gradients.
                all_ok = tf.reduce_all(tf.stack([acc_ok] + [tf.reduce_all(tf.is_finite(g)) for g in device.grad_acc.values()]))
                apply_op = lambda: device.optimizer.apply_gradients([(tf.cast(grad, var.dtype), var) for var, grad in device.grad_acc.items()])
                all_ops.append(tf.cond(all_ok, apply_op, tf.no_op))

                # Adjust loss scaling.
                if self.use_loss_scaling:
                    ls_inc_op = lambda: tf.assign_add(device.loss_scaling_var, self.loss_scaling_inc)
                    ls_dec_op = lambda: tf.assign_sub(device.loss_scaling_var, self.loss_scaling_dec)
                    ls_update_op = lambda: tf.group(tf.cond(all_ok, ls_inc_op, ls_dec_op))
                    all_ops.append(tf.cond(acc_ok, ls_update_op, tf.no_op))

                # Last device => report statistics.
                if device_idx == len(self._devices) - 1:
                    all_ops.append(autosummary.autosummary(self.id + "/learning_rate", self.learning_rate))
                    all_ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(all_ok, 0, 1), condition=acc_ok))
                    if self.use_loss_scaling:
                        all_ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", device.loss_scaling_var))

        # Initialize variables.
        self.reset_optimizer_state()
        if self.use_loss_scaling:
            tfutil.init_uninitialized_vars([device.loss_scaling_var for device in self._devices.values()])
        if self.minibatch_multiplier is not None:
            tfutil.run([var.initializer for device in self._devices.values() for var in list(device.grad_acc_vars.values()) + [device.grad_acc_count]])

        # Group everything into a single op.
        with tfutil.absolute_name_scope(self.scope):
            return tf.group(*all_ops, name="TrainingOp")

    def reset_optimizer_state(self) -> None:
        """Reset internal state of the underlying optimizer."""
        tfutil.assert_tf_initialized()
        tfutil.run([var.initializer for device in self._devices.values() for var in device.optimizer.variables()])

    def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
        """Get or create variable representing log2 of the current dynamic loss scaling factor."""
        return self._get_device(device).loss_scaling_var

    def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
        """Apply dynamic loss scaling for the given expression."""
        assert tfutil.is_tf_expression(value)
        if not self.use_loss_scaling:
            return value
        return value * tfutil.exp2(self.get_loss_scaling_var(value.device))

    def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
        """Undo the effect of dynamic loss scaling for the given expression."""
        assert tfutil.is_tf_expression(value)
        if not self.use_loss_scaling:
            return value
        return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type


class SimpleAdam:
    """Simplified version of tf.train.AdamOptimizer that behaves identically when used with dnnlib.tflib.Optimizer."""

    def __init__(self, name="Adam", learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
        self.name = name
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.all_state_vars = []

    def variables(self):
        return self.all_state_vars

    def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_NONE):
        assert gate_gradients == tf.train.Optimizer.GATE_NONE
        return list(zip(tf.gradients(loss, var_list), var_list))

    def apply_gradients(self, grads_and_vars):
        with tf.name_scope(self.name):
            state_vars = []
            update_ops = []

            # Adjust learning rate to deal with startup bias.
            with tf.control_dependencies(None):
                b1pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
                b2pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
                state_vars += [b1pow_var, b2pow_var]
            b1pow_new = b1pow_var * self.beta1
            b2pow_new = b2pow_var * self.beta2
            update_ops += [tf.assign(b1pow_var, b1pow_new), tf.assign(b2pow_var, b2pow_new)]
            lr_new = self.learning_rate * tf.sqrt(1 - b2pow_new) / (1 - b1pow_new)

            # Construct ops to update each variable.
            for grad, var in grads_and_vars:
                with tf.control_dependencies(None):
                    m_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
                    v_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
                    state_vars += [m_var, v_var]
                m_new = self.beta1 * m_var + (1 - self.beta1) * grad
                v_new = self.beta2 * v_var + (1 - self.beta2) * tf.square(grad)
                var_delta = lr_new * m_new / (tf.sqrt(v_new) + self.epsilon)
                update_ops += [tf.assign(m_var, m_new), tf.assign(v_var, v_new), tf.assign_sub(var, var_delta)]

            # Group everything together.
            self.all_state_vars += state_vars
            return tf.group(*update_ops)