Spaces:
Sleeping
Sleeping
File size: 4,352 Bytes
86b946a 43773a4 d968fe8 86b946a 27e28a2 a197dc7 12071d0 7681a13 27e28a2 12071d0 86b946a a197dc7 2e97054 c88185a 8713e85 c88185a 8713e85 a197dc7 dfb995a 2e97054 dfb995a a197dc7 86b946a 12071d0 a79aa4c ca40e15 2f6a203 a197dc7 64e30b5 a197dc7 e50c4cb 019cdf0 86b946a a197dc7 3405778 7681a13 f845a0a dfb995a 7681a13 124bb90 13ab025 7681a13 13ab025 124bb90 dfb995a 124bb90 3405778 dfb995a 883b37e f845a0a 883b37e 2f6a203 883b37e a197dc7 883b37e 9d3d652 883b37e e0d541d 883b37e 3405778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
from gradio_client import Client
from st_audiorec import st_audiorec
# Constants
TITLE = "AgriTure"
DESCRIPTION = """
----
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriTure". This Model helps the farmers and scientists to develop the art of agriculture and farming.
Hope this will be a Successful Project!!!
~Achyuth
----
"""
# Initialize client
with st.sidebar:
system_promptSide = st.text_input("Optional system prompt:")
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
def transcribe(wav_path):
return whisper_client.predict(
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
"transcribe", # str in 'Task' Radio component
api_name="/predict"
)
# Prediction function
def predict(message, system_prompt='Your name is OpenGPT. You are developed by Achyuth. You need to mostly focus on giving information about future agriculture and advanced farming. Empower yourself farming future with cutting-edge technology and sustainable practices. You need to cultivate a greener and more productive. Your developer is studying in The Hyderabad Public School Kadapa.', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2):
with st.status("Starting client"):
client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
st.write("Requesting Audio Transcriber")
with st.status("Requesting AgriTure v1"):
st.write("Requesting API")
response = client.predict(
message, # str in 'Message' Textbox component
system_prompt, # str in 'Optional system prompt' Textbox component
max_new_tokens, # int | float (numeric value between 0 and 4096)
temperature, # int | float (numeric value between 0.0 and 1.0)
Topp,
500,
Repetitionpenalty, # int | float (numeric value between 1.0 and 2.0)
api_name="/chat"
)
st.write("Done")
return response
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("π§βπ»" if message["role"] == 'human' else 'π¦')):
st.markdown(message["content"])
textinput = st.chat_input("Ask AgriTure anything...")
wav_audio_data = st_audiorec()
if wav_audio_data != None:
with st.status("Transcribing audio..."):
# save audio
with open("audio.wav", "wb") as f:
f.write(wav_audio_data)
prompt = transcribe("audio.wav")
st.write("Transcribed Given Audio β")
st.chat_message("human",avatar = "π§βπ»").markdown(prompt)
st.session_state.messages.append({"role": "human", "content": prompt})
# transcribe audio
response = predict(message= prompt)
with st.chat_message("assistant", avatar='π¦'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# React to user input
if prompt := textinput:
# Display user message in chat message container
st.chat_message("human",avatar = "π¬: ").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide, Topp=ToppSide,Repetitionpenalty=RepetitionpenaltySide)
# Display assistant response in chat message container
with st.chat_message("assistant", avatar='π¦'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
|