File size: 7,077 Bytes
45b3fc1
 
855113e
45b3fc1
855113e
 
45b3fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fb3259
 
 
b3dff97
4fb3259
b3dff97
 
4fb3259
 
b3dff97
4fb3259
 
b3dff97
 
4fb3259
b3dff97
 
4fb3259
b3dff97
 
 
4fb3259
 
 
 
 
 
 
 
45b3fc1
 
 
 
 
4fb3259
 
 
 
 
 
 
 
 
 
 
 
 
 
855113e
45b3fc1
 
 
 
 
 
 
 
 
 
 
855113e
 
45b3fc1
4fb3259
855113e
45b3fc1
855113e
 
45b3fc1
855113e
45b3fc1
 
855113e
 
 
 
 
45b3fc1
855113e
 
 
45b3fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855113e
45b3fc1
 
 
855113e
 
45b3fc1
 
 
 
 
 
 
 
855113e
 
45b3fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from click import Parameter
import numpy as np
from joblib import load
from typing import List
import pandas as pd
import random
from pydantic import (
    BaseModel,
    ValidationError,
    ValidationInfo,
    field_validator,
    model_validator,
)

PARAM_BOUNDS = [
    {"name": "N", "type": "range", "bounds": [1, 10]},
    {"name": "alpha", "type": "range", "bounds": [0.0, 1.0]},
    {"name": "d_model", "type": "range", "bounds": [100, 1024]},
    {"name": "dim_feedforward", "type": "range", "bounds": [1024, 4096]},
    {"name": "dropout", "type": "range", "bounds": [0.0, 1.0]},
    {"name": "emb_scaler", "type": "range", "bounds": [0.0, 1.0]},
    {"name": "epochs_step", "type": "range", "bounds": [5, 20]},
    {"name": "eps", "type": "range", "bounds": [1e-7, 1e-4]},
    {"name": "fudge", "type": "range", "bounds": [0.0, 0.1]},
    {"name": "heads", "type": "range", "bounds": [1, 10]},
    {"name": "k", "type": "range", "bounds": [2, 10]},
    {"name": "lr", "type": "range", "bounds": [1e-4, 6e-3]},
    {"name": "pe_resolution", "type": "range", "bounds": [2500, 10000]},
    {"name": "ple_resolution", "type": "range", "bounds": [2500, 10000]},
    {"name": "pos_scaler", "type": "range", "bounds": [0.0, 1.0]},
    {"name": "weight_decay", "type": "range", "bounds": [0.0, 1.0]},
    {"name": "batch_size", "type": "range", "bounds": [32, 256]},
    {"name": "out_hidden4", "type": "range", "bounds": [32, 512]},
    {"name": "betas1", "type": "range", "bounds": [0.5, 0.9999]},
    {"name": "betas2", "type": "range", "bounds": [0.5, 0.9999]},
    {"name": "bias", "type": "choice", "values": [False, True]},
    {"name": "criterion", "type": "choice", "values": ["RobustL1", "RobustL2"]},
    {"name": "elem_prop", "type": "choice", "values": ["mat2vec", "magpie", "onehot"]},
    {"name": "train_frac", "type": "range", "bounds": [0.01, 1.0]},
]


class Parameterization(BaseModel):
    N: float  # int
    alpha: float
    d_model: float  # int
    dim_feedforward: float  # int
    dropout: float
    emb_scaler: float
    epochs_step: float  # int
    eps: float
    fudge: float
    heads: float  # int
    k: float  # int
    lr: float
    pe_resolution: float  # int
    ple_resolution: float  # int
    pos_scaler: float
    weight_decay: float  # int
    batch_size: float  # int
    out_hidden4: float  # int
    betas1: float
    betas2: float
    bias: bool
    criterion: str
    elem_prop: str
    train_frac: float

    @field_validator("*")
    def check_bounds(cls, v: int, info: ValidationInfo) -> int:
        param = next(
            (item for item in PARAM_BOUNDS if item["name"] == info.field_name),
            None,
        )
        if param is None:
            return v

        if param["type"] == "range":
            min_val, max_val = param["bounds"]
            if not min_val <= v <= max_val:
                raise ValueError(
                    f"{info.field_name} must be between {min_val} and {max_val}"
                )
        elif param["type"] == "choice":
            if v not in param["values"]:
                raise ValueError(f"{info.field_name} must be one of {param['values']}")

        return v

    @model_validator(mode="after")
    def check_constraints(self) -> "Parameterization":
        if self.betas1 > self.betas2:
            raise ValueError(
                f"Received betas1={self.betas1} which should be less than betas2={self.betas2}"
            )
        if self.emb_scaler + self.pos_scaler > 1.0:
            raise ValueError(
                f"Received emb_scaler={self.emb_scaler} and pos_scaler={self.pos_scaler} which should sum to less than or equal to 1.0"  # noqa: E501
            )


class CrabNetSurrogateModel(object):
    def __init__(self, fpath="models/surrogate_models_hgbr_opt.pkl"):
        self.models = load(fpath)

    def prepare_params_for_eval(self, raw_params: dict):
        raw_params["bias"] = int(raw_params["bias"])
        raw_params["use_RobustL1"] = raw_params["criterion"] == "RobustL1"
        del raw_params["criterion"]

        # REVIEW: HistGradientBoostingRegressor handles categoricals natively now
        # https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_categorical.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-categorical-py # noqa: E501
        elem_prop = raw_params["elem_prop"]
        raw_params["elem_prop_magpie"] = 0
        raw_params["elem_prop_mat2vec"] = 0
        raw_params["elem_prop_onehot"] = 0
        raw_params[f"elem_prop_{elem_prop}"] = 1
        del raw_params["elem_prop"]

        return raw_params

    def surrogate_evaluate(
        self, params_list: List[dict], seed=None, remove_noise=False
    ):
        assert isinstance(params_list, list), "Input must be a list of dictionaries"
        # Validate the parameters (i.e., will throw error if invalid)
        [Parameterization(**params) for params in params_list]

        parameters = pd.DataFrame(params_list)
        parameters = parameters.apply(self.prepare_params_for_eval, axis=1)

        if remove_noise:
            mae_percentiles = [0.5] * len(parameters)
            rmse_percentiles = [0.5] * len(parameters)
            runtime_percentiles = [0.5] * len(parameters)
        else:
            # Random number generator, without seed (intentional)
            rng = np.random.default_rng(seed)

            # Generate random percentiles for each set of parameters for
            # heteroskedastic, parameter-free noise
            mae_percentiles = rng.uniform(0, 1, size=len(parameters))
            rmse_percentiles = mae_percentiles  # typically correlated with MAE

            # typically anticorrelated with MAE/RMSE
            runtime_percentiles = 1 - mae_percentiles

        # Make predictions for each model
        mae_model = self.models["mae"]
        rmse_model = self.models["rmse"]
        runtime_model = self.models["runtime"]
        model_size_model = self.models["model_size"]

        # NOTE: The model expects the variables in the same order as when it was fit
        mae = self.models["mae"].predict(
            parameters.assign(mae_rank=mae_percentiles)[mae_model.feature_names_in_]
        )

        rmse = self.models["rmse"].predict(
            parameters.assign(rmse_rank=rmse_percentiles)[rmse_model.feature_names_in_]
        )

        runtime = self.models["runtime"].predict(
            parameters.assign(runtime_rank=runtime_percentiles)[
                runtime_model.feature_names_in_
            ]
        )

        # Model size is deterministic (hence no rank variable)
        model_size = self.models["model_size"].predict(
            parameters[model_size_model.feature_names_in_]
        )

        # Combine predictions into a list of dictionaries
        results = [
            {"mae": m, "rmse": r, "runtime": rt, "model_size": ms}
            for m, r, rt, ms in zip(mae, rmse, runtime, model_size)
        ]

        return results


# %% Code Graveyard

# runtime_percentiles = np.random.uniform(
#     0, 1, size=len(parameters)
# )