File size: 3,915 Bytes
c8455f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93e54f
c8455f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# app.py

import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling
import torch
import os

# Check if CUDA is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Model name
PRETRAINED_MODEL = "distilgpt2"
MODEL_DIR = "./fine_tuned_model"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL)

def fine_tune_model(files):
    # Combine uploaded files into one text
    if not files:
        return "No files uploaded."
    text_data = ""
    for file in files:
        text = file.decode('utf-8')
        text_data += text + "\n"

    # Save combined text to a file
    with open("train.txt", "w") as f:
        f.write(text_data)

    # Create dataset
    dataset = TextDataset(
        tokenizer=tokenizer,
        file_path="train.txt",
        block_size=128
    )

    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=False,
    )

    # Load pre-trained model
    model = AutoModelForCausalLM.from_pretrained(PRETRAINED_MODEL)
    model.to(device)

    # Set training arguments
    training_args = TrainingArguments(
        output_dir=MODEL_DIR,
        overwrite_output_dir=True,
        num_train_epochs=1,
        per_device_train_batch_size=4,
        save_steps=500,
        save_total_limit=2,
        logging_steps=100,
    )

    # Initialize Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=dataset,
    )

    # Fine-tune model
    trainer.train()

    # Save the model
    trainer.save_model(MODEL_DIR)
    tokenizer.save_pretrained(MODEL_DIR)

    return "Fine-tuning completed successfully!"

def generate_response(prompt, temperature, max_length, top_p):
    # Load fine-tuned model if available
    if os.path.exists(MODEL_DIR):
        model = AutoModelForCausalLM.from_pretrained(MODEL_DIR)
        tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
    else:
        model = AutoModelForCausalLM.from_pretrained(PRETRAINED_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL)
    model.to(device)

    # Encode prompt
    input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)

    # Generate output
    output = model.generate(
        input_ids,
        do_sample=True,
        max_length=int(max_length),
        temperature=float(temperature),
        top_p=float(top_p),
        pad_token_id=tokenizer.eos_token_id
    )

    response = tokenizer.decode(output[0], skip_special_tokens=True)
    return response

# Build Gradio Interface

with gr.Blocks() as demo:
    gr.Markdown("# πŸš€ Language Model Fine-Tuner and Chatbot")

    with gr.Tab("Fine-Tune Model"):
        gr.Markdown("## πŸ“š Fine-Tune the Model with Your Documents")
        file_inputs = gr.File(label="Upload Text Files", file_count="multiple", type="binary")
        fine_tune_button = gr.Button("Start Fine-Tuning")
        fine_tune_status = gr.Textbox(label="Status", interactive=False)
        fine_tune_button.click(fine_tune_model, inputs=file_inputs, outputs=fine_tune_status)

    with gr.Tab("Chat with Model"):
        gr.Markdown("## πŸ’¬ Chat with the Fine-Tuned Model")
        user_input = gr.Textbox(label="Your Message")
        with gr.Accordion("Advanced Parameters", open=False):
            temperature = gr.Slider(0.1, 1.0, value=0.7, label="Temperature")
            max_length = gr.Slider(20, 200, value=100, step=10, label="Max Length")
            top_p = gr.Slider(0.1, 1.0, value=0.9, label="Top-p")
        generate_button = gr.Button("Generate Response")
        bot_response = gr.Textbox(label="Model Response", interactive=False)
        generate_button.click(generate_response, inputs=[user_input, temperature, max_length, top_p], outputs=bot_response)

demo.launch()