File size: 5,395 Bytes
7f8188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
extract documents and store them in a vector db as a collection
"""

from .web_scrape import scrape_main
from langchain_openai import AzureOpenAIEmbeddings
from langchain_milvus import Milvus
import os
from dotenv import load_dotenv
import logging
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_core.documents import Document
from concurrent.futures import ProcessPoolExecutor
import asyncio
import time
from itertools import chain
from rich.pretty import pprint

load_dotenv()
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


embedding_model = AzureOpenAIEmbeddings(
    azure_deployment="text-embedding-ada-002",
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),
    api_version="2023-05-15",
)


def get_milvus_vector_store():
    return Milvus(
        embedding_function=embedding_model,
        collection_name="test",
        connection_args={"uri": os.getenv("MILVUS_URI")},
        auto_id=True,
        drop_old=True,
        index_params={
            "index_type": "HNSW",
            "metric_type": "COSINE",
            "params": {"M": 8, "efConstruction": 64},
        },
    )


def get_vs_as_retriever():
    return get_milvus_vector_store().as_retriever(
        search_type="similarity", search_kwargs={"k": 5}
    )


URLS_TO_SCRAPE = [
    "https://www.artisan.co",
    "https://www.artisan.co/about",
    "https://www.artisan.co/sales-ai",
    "https://www.artisan.co/ai-sales-agent",
    "https://www.artisan.co/products/linkedin-outreach",
    "https://www.artisan.co/products/email-warmup",
    "https://www.artisan.co/products/sales-automation",
    "https://www.artisan.co/products/email-personalization",
    "https://www.artisan.co/features/email-deliverability",
    "https://help.artisan.co/articles/7415399613-can-i-schedule-when-emails-go-out",
    "https://help.artisan.co/articles/5365244006-what-is-email-warmup",
    "https://help.artisan.co/articles/8442274387-ava-is-sending-strange-messages-from-my-email",
    "https://help.artisan.co/articles/1195138264-is-there-a-limit-to-the-amount-of-leads-i-can-have-in-my-csv-file",
    "https://help.artisan.co/articles/5617649387-help-i-can-t-turn-on-my-campaign",
    "https://help.artisan.co/articles/1048710797-how-does-website-visitor-identification-work",
    "https://help.artisan.co/articles/3886727025-generate-sample-email",
    "https://help.artisan.co/articles/6218358204-running-ava-on-copilot-vs-autopilot",
    "https://help.artisan.co/articles/9265896700-adding-delegates-and-team-members",
    "https://help.artisan.co/articles/2734968853-how-to-create-a-campaign",
    "https://help.artisan.co/articles/7633990298-how-to-integrate-artisan-with-your-crm",
    "https://help.artisan.co/articles/6092562650-how-do-i-upload-a-csv-file-of-my-own-leads",
    "https://help.artisan.co/articles/4356675492-how-do-i-add-variables-to-my-email",
    "https://help.artisan.co/articles/3551943296-how-do-i-request-a-script-tag-for-my-watchtower-campaign",
    "https://help.artisan.co/articles/9602711709-how-do-i-integrate-ava-with-slack",
    "https://www.artisan.co/pricing",
]


def chunk_parent_document(document: Document) -> list[Document]:
    semantic_text_splitter = SemanticChunker(
        embeddings=embedding_model, min_chunk_size=100
    )
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=250,
        separators=[
            "\n#{1,6} ",
            "\n\\*\\*\\*+\n",
            "\n---+\n",
            "\n___+\n",
            "\n\n",
            "\n",
            ".",
            "?",
            "!",
        ],
    )
    chunked_documents = semantic_text_splitter.split_documents([document])
    chunked_documents = [
        chunked_doc_item
        for chunked_doc_item in chunked_documents
        if len(chunked_doc_item.page_content) > 0 or chunked_doc_item.page_content
    ]
    final_chunked_documents = []

    for idx, chunked_doc in enumerate(chunked_documents):
        pprint(chunked_doc)
        if len(chunked_doc.page_content) > 5000:
            sub_chunked_documents = text_splitter.split_documents([chunked_doc])
            final_chunked_documents.extend(sub_chunked_documents)
        else:
            final_chunked_documents.append(chunked_doc)
    return final_chunked_documents


async def ingest_urls(chunk_executor: ProcessPoolExecutor, milvus_vector_store: Milvus):
    lc_documents = await scrape_main(URLS_TO_SCRAPE)
    start_time = time.time()
    chunked_documents = list(chunk_executor.map(chunk_parent_document, lc_documents))
    chunked_documents = list(chain.from_iterable(chunked_documents))
    end_time = time.time()
    logger.info(f"Time taken to chunk documents: {end_time - start_time} seconds")

    start_time = time.time()
    if chunked_documents:
        _ = milvus_vector_store.add_documents(chunked_documents, batch_size=50)
    logger.info(
        f"Time taken to ingest documents into Milvus: {time.time() - start_time} seconds"
    )


if __name__ == "__main__":
    chunk_executor = ProcessPoolExecutor()
    milvus_vector_store = get_milvus_vector_store()
    asyncio.run(ingest_urls(chunk_executor, milvus_vector_store))