Spaces:
Sleeping
Sleeping
File size: 6,156 Bytes
3dc0589 c67d4f6 3dc0589 d324fa1 3dc0589 c67d4f6 3dc0589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import pandas as pd
import streamlit as st
import numpy as np
import tensorflow as tf
from PIL import Image
import pickle
st.header('Demo')
task = st.selectbox('Select Task', ["Select One",'Sentiment Classification', 'Tumor Detection'])
if task == "Tumor Detection":
def cnn(img, model):
img = Image.open(img)
img = img.resize((128, 128))
img = np.array(img)
input_img = np.expand_dims(img, axis=0)
res = model.predict(input_img)
if res:
return "Tumor Detected"
else:
return "No Tumor"
cnn_model = tf.keras.models.load_model("tumor_detection_model.h5")
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
if st.button("Submit"):
result=cnn(uploaded_file, cnn_model)
st.write(result)
elif task == "Sentiment Classification":
types = ["Perceptron","BackPropagation", "RNN","DNN", "LSTM"]
input_text2 = st.radio("Select", types, horizontal=True)
if input_text2 == "Perceptron":
with open("ppn_model.pkl",'rb') as file:
perceptron = pickle.load(file)
with open("ppn_tokeniser.pkl",'rb') as file:
ppn_tokeniser = pickle.load(file)
def ppn_make_predictions(inp, model):
encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using Perceptron')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = ppn_make_predictions([inp], perceptron)
st.write(pred)
if input_text2 == "BackPropagation":
with open("bp_model.pkl",'rb') as file:
backprop = pickle.load(file)
with open("bp_tokeniser.pkl",'rb') as file:
bp_tokeniser = pickle.load(file)
def bp_make_predictions(inp, model):
encoded_inp = bp_tokeniser.texts_to_sequences([inp])
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
res = model.predict(padded_inp)
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using BackPropagation')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = bp_make_predictions([inp], backprop)
st.write(pred)
elif input_text2 == "RNN":
rnn_model=tf.keras.models.load_model("rnn_model.h5")
with open("spam_tokeniser.pkl", 'rb') as model_file:
rnn_tokeniser=pickle.load(model_file)
def rnn_make_predictions(inp, model):
encoded_inp = rnn_tokeniser.texts_to_sequences([inp])
padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
res = (model.predict(padded_inp) > 0.5).astype("int32")
if res:
return "Spam"
else:
return "Ham"
st.subheader('Spam message Classification using RNN')
input = st.text_area("Give message")
if st.button('Check'):
pred = rnn_make_predictions([input], rnn_model)
st.write(pred)
elif input_text2 == "DNN":
dnn_model=tf.keras.models.load_model("dnn_model.h5")
with open("dnn_tokeniser.pkl",'rb') as file:
dnn_tokeniser = pickle.load(file)
def dnn_make_predictions(inp, model):
inp = dnn_tokeniser.texts_to_sequences([inp])
inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
res = model.predict([inp])
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using DNN')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = dnn_make_predictions([inp], dnn_model)
st.write(pred)
elif input_text2 == "LSTM":
lstm_model=tf.keras.models.load_model("lstm_model.h5")
with open("lstm_tokeniser.pkl",'rb') as file:
lstm_tokeniser = pickle.load(file)
def lstm_make_predictions(inp, model):
inp = lstm_tokeniser.texts_to_sequences([inp])
inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
res = (model.predict(inp) > 0.5).astype("int32")
if res:
return "Negative"
else:
return "Positive"
st.subheader('Movie Review Classification using LSTM')
inp = st.text_area('Enter message')
if st.button('Check'):
pred = lstm_make_predictions([inp], lstm_model)
st.write(pred)
|