File size: 6,156 Bytes
3dc0589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67d4f6
3dc0589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d324fa1
3dc0589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67d4f6
3dc0589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import pandas as pd
import streamlit as st
import numpy as np
import tensorflow as tf
from PIL import Image
import pickle


st.header('Demo')
task = st.selectbox('Select Task', ["Select One",'Sentiment Classification', 'Tumor Detection'])


if task == "Tumor Detection":
        def cnn(img, model):
            img = Image.open(img)
            img = img.resize((128, 128))
            img = np.array(img)
            input_img = np.expand_dims(img, axis=0)
            res = model.predict(input_img)
            if res:
                return "Tumor Detected"
            else:
                return "No Tumor" 
            
        cnn_model = tf.keras.models.load_model("tumor_detection_model.h5")
        uploaded_file = st.file_uploader("Choose a file", type=["jpg", "jpeg", "png"])
        if uploaded_file is not None:
            st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
            if st.button("Submit"):
                result=cnn(uploaded_file, cnn_model)
                st.write(result)

        
elif task == "Sentiment Classification":
        types = ["Perceptron","BackPropagation", "RNN","DNN", "LSTM"]
        input_text2 = st.radio("Select", types, horizontal=True)

        if input_text2 == "Perceptron":
                with open("ppn_model.pkl",'rb') as file:
                    perceptron = pickle.load(file)
                with open("ppn_tokeniser.pkl",'rb') as file:
                    ppn_tokeniser = pickle.load(file)

                def ppn_make_predictions(inp, model):
                    encoded_inp = ppn_tokeniser.texts_to_sequences([inp])
                    padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
                    res = model.predict(padded_inp)
                    if res:
                        return "Negative"
                    else:
                        return "Positive"       
                
                st.subheader('Movie Review Classification using Perceptron')
                inp = st.text_area('Enter message')
                if st.button('Check'):
                    pred = ppn_make_predictions([inp], perceptron)
                    st.write(pred)

        if input_text2 == "BackPropagation":
                with open("bp_model.pkl",'rb') as file:
                    backprop = pickle.load(file)
                with open("bp_tokeniser.pkl",'rb') as file:
                    bp_tokeniser = pickle.load(file)

                def bp_make_predictions(inp, model):
                    encoded_inp = bp_tokeniser.texts_to_sequences([inp])
                    padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=500)
                    res = model.predict(padded_inp)
                    if res:
                        return "Negative"
                    else:
                        return "Positive"     
                       
                st.subheader('Movie Review Classification using BackPropagation')
                inp = st.text_area('Enter message')
                if st.button('Check'):
                    pred = bp_make_predictions([inp], backprop)
                    st.write(pred)
        

        elif input_text2 == "RNN":
                rnn_model=tf.keras.models.load_model("rnn_model.h5")
                with open("spam_tokeniser.pkl", 'rb') as model_file:
                    rnn_tokeniser=pickle.load(model_file)

                def rnn_make_predictions(inp, model):
                    encoded_inp = rnn_tokeniser.texts_to_sequences([inp])
                    padded_inp = tf.keras.preprocessing.sequence.pad_sequences(encoded_inp, maxlen=10, padding='post')
                    res = (model.predict(padded_inp) > 0.5).astype("int32")
                    if res:
                        return "Spam"
                    else:
                        return "Ham"

                st.subheader('Spam message Classification using RNN')
                input = st.text_area("Give message")
                if st.button('Check'):
                    pred = rnn_make_predictions([input], rnn_model)
                    st.write(pred)



        elif input_text2 == "DNN":
                        dnn_model=tf.keras.models.load_model("dnn_model.h5")
                        with open("dnn_tokeniser.pkl",'rb') as file:
                            dnn_tokeniser = pickle.load(file)

                        def dnn_make_predictions(inp, model):

                            inp = dnn_tokeniser.texts_to_sequences([inp])
                            inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
                            res = model.predict([inp]) 
                            if res:
                                return "Negative"
                            else:
                                return "Positive"       
                        
                        st.subheader('Movie Review Classification using DNN')
                        inp = st.text_area('Enter message')
                        if st.button('Check'):
                            pred = dnn_make_predictions([inp], dnn_model)
                            st.write(pred)

                            

        elif input_text2 == "LSTM":
                lstm_model=tf.keras.models.load_model("lstm_model.h5")

                with open("lstm_tokeniser.pkl",'rb') as file:
                    lstm_tokeniser = pickle.load(file)

                def lstm_make_predictions(inp, model):
                    inp = lstm_tokeniser.texts_to_sequences([inp])
                    inp = tf.keras.preprocessing.sequence.pad_sequences(inp, maxlen=500)
                    res = (model.predict(inp) > 0.5).astype("int32")
                    if res:
                        return "Negative"
                    else:
                        return "Positive"
                st.subheader('Movie Review Classification using LSTM')
                inp = st.text_area('Enter message')
                if st.button('Check'):
                    pred = lstm_make_predictions([inp], lstm_model)
                    st.write(pred)