Spaces:
Runtime error
Runtime error
File size: 7,546 Bytes
f25ff37 f279bf5 f25ff37 f279bf5 f25ff37 f279bf5 f25ff37 f279bf5 4a3a5b5 f25ff37 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 6a8900c 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f25ff37 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 f25ff37 4a3a5b5 f25ff37 f279bf5 6a8900c 4a3a5b5 6a8900c 4a3a5b5 6a8900c 4a3a5b5 f25ff37 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 f25ff37 f279bf5 4a3a5b5 f279bf5 4a3a5b5 f279bf5 4a3a5b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
import json
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
import base64
from PIL import Image
import io
import cv2
from insightface.app import FaceAnalysis
from moviepy.editor import VideoFileClip
# Load models
@st.cache_resource
def load_models():
unified_model = SentenceTransformer("clip-ViT-B-32")
face_app = FaceAnalysis(providers=['CPUExecutionProvider'])
face_app.prepare(ctx_id=0, det_size=(640, 640))
return unified_model, face_app
unified_model, face_app = load_models()
# Load data
@st.cache_data
def load_data(video_id):
with open(f"{video_id}_summary.json", "r") as f:
summary = json.load(f)
with open(f"{video_id}_transcription.json", "r") as f:
transcription = json.load(f)
with open(f"{video_id}_unified_metadata.json", "r") as f:
unified_metadata = json.load(f)
with open(f"{video_id}_face_metadata.json", "r") as f:
face_metadata = json.load(f)
return summary, transcription, unified_metadata, face_metadata
video_id = "IMFUOexuEXw"
video_path = "avengers_interview.mp4"
summary, transcription, unified_metadata, face_metadata = load_data(video_id)
# Load FAISS indexes
@st.cache_resource
def load_indexes(video_id):
unified_index = faiss.read_index(f"{video_id}_unified_index.faiss")
face_index = faiss.read_index(f"{video_id}_face_index.faiss")
return unified_index, face_index
unified_index, face_index = load_indexes(video_id)
# Search functions
def unified_search(query, index, metadata, model, n_results=5):
if isinstance(query, str):
query_vector = model.encode([query], convert_to_tensor=True).cpu().numpy()
else: # Assume it's an image
query_vector = model.encode(query, convert_to_tensor=True).cpu().numpy()
D, I = index.search(query_vector, n_results)
results = [{'data': metadata[i], 'distance': d} for i, d in zip(I[0], D[0])]
return results
def face_search(face_embedding, index, metadata, n_results=5):
D, I = index.search(np.array(face_embedding).reshape(1, -1), n_results)
results = [metadata[i] for i in I[0]]
return results, D[0]
def detect_and_embed_face(image, face_app):
img_array = np.array(image)
faces = face_app.get(img_array)
if len(faces) == 0:
return None
largest_face = max(faces, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))
return largest_face.embedding
def create_video_clip(video_path, start_time, end_time, output_path):
with VideoFileClip(video_path) as video:
new_clip = video.subclip(start_time, end_time)
new_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
return output_path
# Streamlit UI
st.title("Video Analysis Dashboard")
# Sidebar with full video and scrollable transcript
st.sidebar.header("Full Video")
st.sidebar.video(video_path)
st.sidebar.header("Video Transcript")
transcript_text = transcription['transcription']
st.sidebar.text_area("Full Transcript", transcript_text, height=300)
# Main content
st.header("Video Summary")
col1, col2 = st.columns(2)
with col1:
st.subheader("Prominent Faces")
for face in summary['prominent_faces']:
st.write(f"Face ID: {face['id']}, Appearances: {face['appearances']}")
if 'thumbnail' in face:
image = Image.open(io.BytesIO(base64.b64decode(face['thumbnail'])))
st.image(image, caption=f"Face ID: {face['id']}", width=100)
with col2:
st.subheader("Themes")
for theme in summary['themes']:
st.write(f"Theme ID: {theme['id']}, Keywords: {', '.join(theme['keywords'])}")
# Search functionality
st.header("Search")
search_type = st.selectbox("Select search type", ["Unified", "Face"])
if search_type == "Unified":
search_method = st.radio("Choose search method", ["Text", "Image"])
if search_method == "Text":
query = st.text_input("Enter your search query")
if st.button("Search"):
results = unified_search(query, unified_index, unified_metadata, unified_model)
st.subheader("Search Results")
for result in results:
st.write(f"Time: {result['data']['start']:.2f}s - {result['data']['end']:.2f}s, Distance: {result['distance']:.4f}")
if 'text' in result['data']:
st.write(f"Text: {result['data']['text']}")
clip_path = create_video_clip(video_path, result['data']['start'], result['data']['end'], f"temp_clip_{result['data']['start']}.mp4")
st.video(clip_path)
st.write("---")
else:
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Search"):
results = unified_search(image, unified_index, unified_metadata, unified_model)
st.subheader("Image Search Results")
for result in results:
st.write(f"Time: {result['data']['start']:.2f}s - {result['data']['end']:.2f}s, Distance: {result['distance']:.4f}")
clip_path = create_video_clip(video_path, result['data']['start'], result['data']['end'], f"temp_clip_{result['data']['start']}.mp4")
st.video(clip_path)
st.write("---")
elif search_type == "Face":
face_search_type = st.radio("Choose face search method", ["Select from video", "Upload image"])
if face_search_type == "Select from video":
face_id = st.selectbox("Select a face", [face['id'] for face in summary['prominent_faces']])
if st.button("Search"):
selected_face = next(face for face in summary['prominent_faces'] if face['id'] == face_id)
face_results, face_distances = face_search(selected_face['embedding'], face_index, face_metadata)
st.subheader("Face Search Results")
for result, distance in zip(face_results, face_distances):
st.write(f"Time: {result['start']:.2f}s - {result['end']:.2f}s, Distance: {distance:.4f}")
clip_path = create_video_clip(video_path, result['start'], result['end'], f"temp_face_clip_{result['start']}.mp4")
st.video(clip_path)
st.write("---")
else:
uploaded_file = st.file_uploader("Choose a face image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
if st.button("Search"):
face_embedding = detect_and_embed_face(image, face_app)
if face_embedding is not None:
face_results, face_distances = face_search(face_embedding, face_index, face_metadata)
st.subheader("Face Search Results")
for result, distance in zip(face_results, face_distances):
st.write(f"Time: {result['start']:.2f}s - {result['end']:.2f}s, Distance: {distance:.4f}")
clip_path = create_video_clip(video_path, result['start'], result['end'], f"temp_face_clip_{result['start']}.mp4")
st.video(clip_path)
st.write("---")
else:
st.error("No face detected in the uploaded image. Please try another image.") |