File size: 61,537 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Dataloaders and dataset utils
"""

import contextlib
import glob
import hashlib
import json
import math
import os
import random
import shutil
import time
from itertools import repeat
from multiprocessing.pool import Pool, ThreadPool
from pathlib import Path
from threading import Thread
from urllib.parse import urlparse

import numpy as np
import psutil
import torch
import torch.nn.functional as F
import torchvision
import yaml
from PIL import ExifTags, Image, ImageOps
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
from tqdm import tqdm

from utils.augmentations import (
    Albumentations,
    augment_hsv,
    classify_albumentations,
    classify_transforms,
    copy_paste,
    letterbox,
    mixup,
    random_perspective,
)
from utils.general import (
    DATASETS_DIR,
    LOGGER,
    NUM_THREADS,
    TQDM_BAR_FORMAT,
    check_dataset,
    check_requirements,
    check_yaml,
    clean_str,
    cv2,
    is_colab,
    is_kaggle,
    segments2boxes,
    unzip_file,
    xyn2xy,
    xywh2xyxy,
    xywhn2xyxy,
    xyxy2xywhn,
)
from utils.torch_utils import torch_distributed_zero_first

# Parameters
HELP_URL = "See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data"
IMG_FORMATS = (
    "bmp",
    "dng",
    "jpeg",
    "jpg",
    "mpo",
    "png",
    "tif",
    "tiff",
    "webp",
    "pfm",
)  # include image suffixes
VID_FORMATS = (
    "asf",
    "avi",
    "gif",
    "m4v",
    "mkv",
    "mov",
    "mp4",
    "mpeg",
    "mpg",
    "ts",
    "wmv",
)  # include video suffixes
LOCAL_RANK = int(
    os.getenv("LOCAL_RANK", -1)
)  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
PIN_MEMORY = (
    str(os.getenv("PIN_MEMORY", True)).lower() == "true"
)  # global pin_memory for dataloaders

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == "Orientation":
        break


def get_hash(paths):
    # Returns a single hash value of a list of paths (files or dirs)
    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
    h = hashlib.md5(str(size).encode())  # hash sizes
    h.update("".join(paths).encode())  # hash paths
    return h.hexdigest()  # return hash


def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    with contextlib.suppress(Exception):
        rotation = dict(img._getexif().items())[orientation]
        if rotation in [6, 8]:  # rotation 270 or 90
            s = (s[1], s[0])
    return s


def exif_transpose(image):
    """
    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()

    :param image: The image to transpose.
    :return: An image.
    """
    exif = image.getexif()
    orientation = exif.get(0x0112, 1)  # default 1
    if orientation > 1:
        method = {
            2: Image.FLIP_LEFT_RIGHT,
            3: Image.ROTATE_180,
            4: Image.FLIP_TOP_BOTTOM,
            5: Image.TRANSPOSE,
            6: Image.ROTATE_270,
            7: Image.TRANSVERSE,
            8: Image.ROTATE_90,
        }.get(orientation)
        if method is not None:
            image = image.transpose(method)
            del exif[0x0112]
            image.info["exif"] = exif.tobytes()
    return image


def seed_worker(worker_id):
    # Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
    worker_seed = torch.initial_seed() % 2**32
    np.random.seed(worker_seed)
    random.seed(worker_seed)


def create_dataloader(
    path,
    imgsz,
    batch_size,
    stride,
    single_cls=False,
    hyp=None,
    augment=False,
    cache=False,
    pad=0.0,
    rect=False,
    rank=-1,
    workers=8,
    image_weights=False,
    quad=False,
    prefix="",
    shuffle=False,
    seed=0,
):
    if rect and shuffle:
        LOGGER.warning(
            "WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False"
        )
        shuffle = False
    with torch_distributed_zero_first(
        rank
    ):  # init dataset *.cache only once if DDP
        dataset = LoadImagesAndLabels(
            path,
            imgsz,
            batch_size,
            augment=augment,  # augmentation
            hyp=hyp,  # hyperparameters
            rect=rect,  # rectangular batches
            cache_images=cache,
            single_cls=single_cls,
            stride=int(stride),
            pad=pad,
            image_weights=image_weights,
            prefix=prefix,
        )

    batch_size = min(batch_size, len(dataset))
    nd = torch.cuda.device_count()  # number of CUDA devices
    nw = min(
        [
            os.cpu_count() // max(nd, 1),
            batch_size if batch_size > 1 else 0,
            workers,
        ]
    )  # number of workers
    sampler = (
        None
        if rank == -1
        else distributed.DistributedSampler(dataset, shuffle=shuffle)
    )
    loader = (
        DataLoader if image_weights else InfiniteDataLoader
    )  # only DataLoader allows for attribute updates
    generator = torch.Generator()
    generator.manual_seed(6148914691236517205 + seed + RANK)
    return (
        loader(
            dataset,
            batch_size=batch_size,
            shuffle=shuffle and sampler is None,
            num_workers=nw,
            sampler=sampler,
            pin_memory=PIN_MEMORY,
            collate_fn=LoadImagesAndLabels.collate_fn4
            if quad
            else LoadImagesAndLabels.collate_fn,
            worker_init_fn=seed_worker,
            generator=generator,
        ),
        dataset,
    )


class InfiniteDataLoader(dataloader.DataLoader):
    """Dataloader that reuses workers

    Uses same syntax as vanilla DataLoader
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        object.__setattr__(
            self, "batch_sampler", _RepeatSampler(self.batch_sampler)
        )
        self.iterator = super().__iter__()

    def __len__(self):
        return len(self.batch_sampler.sampler)

    def __iter__(self):
        for _ in range(len(self)):
            yield next(self.iterator)


class _RepeatSampler:
    """Sampler that repeats forever

    Args:
        sampler (Sampler)
    """

    def __init__(self, sampler):
        self.sampler = sampler

    def __iter__(self):
        while True:
            yield from iter(self.sampler)


class LoadScreenshots:
    # YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
    def __init__(
        self, source, img_size=640, stride=32, auto=True, transforms=None
    ):
        # source = [screen_number left top width height] (pixels)
        check_requirements("mss")
        import mss

        source, *params = source.split()
        self.screen, left, top, width, height = (
            0,
            None,
            None,
            None,
            None,
        )  # default to full screen 0
        if len(params) == 1:
            self.screen = int(params[0])
        elif len(params) == 4:
            left, top, width, height = (int(x) for x in params)
        elif len(params) == 5:
            self.screen, left, top, width, height = (int(x) for x in params)
        self.img_size = img_size
        self.stride = stride
        self.transforms = transforms
        self.auto = auto
        self.mode = "stream"
        self.frame = 0
        self.sct = mss.mss()

        # Parse monitor shape
        monitor = self.sct.monitors[self.screen]
        self.top = monitor["top"] if top is None else (monitor["top"] + top)
        self.left = (
            monitor["left"] if left is None else (monitor["left"] + left)
        )
        self.width = width or monitor["width"]
        self.height = height or monitor["height"]
        self.monitor = {
            "left": self.left,
            "top": self.top,
            "width": self.width,
            "height": self.height,
        }

    def __iter__(self):
        return self

    def __next__(self):
        # mss screen capture: get raw pixels from the screen as np array
        im0 = np.array(self.sct.grab(self.monitor))[
            :, :, :3
        ]  # [:, :, :3] BGRA to BGR
        s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "

        if self.transforms:
            im = self.transforms(im0)  # transforms
        else:
            im = letterbox(
                im0, self.img_size, stride=self.stride, auto=self.auto
            )[
                0
            ]  # padded resize
            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
            im = np.ascontiguousarray(im)  # contiguous
        self.frame += 1
        return (
            str(self.screen),
            im,
            im0,
            None,
            s,
        )  # screen, img, original img, im0s, s


class LoadImages:
    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
    def __init__(
        self,
        path,
        img_size=640,
        stride=32,
        auto=True,
        transforms=None,
        vid_stride=1,
    ):
        if (
            isinstance(path, str) and Path(path).suffix == ".txt"
        ):  # *.txt file with img/vid/dir on each line
            path = Path(path).read_text().rsplit()
        files = []
        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
            p = str(Path(p).resolve())
            if "*" in p:
                files.extend(sorted(glob.glob(p, recursive=True)))  # glob
            elif os.path.isdir(p):
                files.extend(sorted(glob.glob(os.path.join(p, "*.*"))))  # dir
            elif os.path.isfile(p):
                files.append(p)  # files
            else:
                raise FileNotFoundError(f"{p} does not exist")

        images = [x for x in files if x.split(".")[-1].lower() in IMG_FORMATS]
        videos = [x for x in files if x.split(".")[-1].lower() in VID_FORMATS]
        ni, nv = len(images), len(videos)

        self.img_size = img_size
        self.stride = stride
        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv
        self.mode = "image"
        self.auto = auto
        self.transforms = transforms  # optional
        self.vid_stride = vid_stride  # video frame-rate stride
        if any(videos):
            self._new_video(videos[0])  # new video
        else:
            self.cap = None
        assert self.nf > 0, (
            f"No images or videos found in {p}. "
            f"Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}"
        )

    def __iter__(self):
        self.count = 0
        return self

    def __next__(self):
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]:
            # Read video
            self.mode = "video"
            for _ in range(self.vid_stride):
                self.cap.grab()
            ret_val, im0 = self.cap.retrieve()
            while not ret_val:
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                path = self.files[self.count]
                self._new_video(path)
                ret_val, im0 = self.cap.read()

            self.frame += 1
            # im0 = self._cv2_rotate(im0)  # for use if cv2 autorotation is False
            s = f"video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: "

        else:
            # Read image
            self.count += 1
            im0 = cv2.imread(path)  # BGR
            assert im0 is not None, f"Image Not Found {path}"
            s = f"image {self.count}/{self.nf} {path}: "

        if self.transforms:
            im = self.transforms(im0)  # transforms
        else:
            im = letterbox(
                im0, self.img_size, stride=self.stride, auto=self.auto
            )[
                0
            ]  # padded resize
            im = im.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
            im = np.ascontiguousarray(im)  # contiguous

        return path, im, im0, self.cap, s

    def _new_video(self, path):
        # Create a new video capture object
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.frames = int(
            self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride
        )
        self.orientation = int(
            self.cap.get(cv2.CAP_PROP_ORIENTATION_META)
        )  # rotation degrees
        # self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0)  # disable https://github.com/ultralytics/yolov5/issues/8493

    def _cv2_rotate(self, im):
        # Rotate a cv2 video manually
        if self.orientation == 0:
            return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
        elif self.orientation == 180:
            return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
        elif self.orientation == 90:
            return cv2.rotate(im, cv2.ROTATE_180)
        return im

    def __len__(self):
        return self.nf  # number of files


class LoadStreams:
    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
    def __init__(
        self,
        sources="file.streams",
        img_size=640,
        stride=32,
        auto=True,
        transforms=None,
        vid_stride=1,
    ):
        torch.backends.cudnn.benchmark = (
            True  # faster for fixed-size inference
        )
        self.mode = "stream"
        self.img_size = img_size
        self.stride = stride
        self.vid_stride = vid_stride  # video frame-rate stride
        sources = (
            Path(sources).read_text().rsplit()
            if os.path.isfile(sources)
            else [sources]
        )
        n = len(sources)
        self.sources = [
            clean_str(x) for x in sources
        ]  # clean source names for later
        self.imgs, self.fps, self.frames, self.threads = (
            [None] * n,
            [0] * n,
            [0] * n,
            [None] * n,
        )
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
            st = f"{i + 1}/{n}: {s}... "
            if urlparse(s).hostname in (
                "www.youtube.com",
                "youtube.com",
                "youtu.be",
            ):  # if source is YouTube video
                # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
                check_requirements(("pafy", "youtube_dl==2020.12.2"))
                import pafy

                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            if s == 0:
                assert (
                    not is_colab()
                ), "--source 0 webcam unsupported on Colab. Rerun command in a local environment."
                assert (
                    not is_kaggle()
                ), "--source 0 webcam unsupported on Kaggle. Rerun command in a local environment."
            cap = cv2.VideoCapture(s)
            assert cap.isOpened(), f"{st}Failed to open {s}"
            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
            self.frames[i] = max(
                int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0
            ) or float(
                "inf"
            )  # infinite stream fallback
            self.fps[i] = (
                max((fps if math.isfinite(fps) else 0) % 100, 0) or 30
            )  # 30 FPS fallback

            _, self.imgs[i] = cap.read()  # guarantee first frame
            self.threads[i] = Thread(
                target=self.update, args=([i, cap, s]), daemon=True
            )
            LOGGER.info(
                f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)"
            )
            self.threads[i].start()
        LOGGER.info("")  # newline

        # check for common shapes
        s = np.stack(
            [
                letterbox(x, img_size, stride=stride, auto=auto)[0].shape
                for x in self.imgs
            ]
        )
        self.rect = (
            np.unique(s, axis=0).shape[0] == 1
        )  # rect inference if all shapes equal
        self.auto = auto and self.rect
        self.transforms = transforms  # optional
        if not self.rect:
            LOGGER.warning(
                "WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams."
            )

    def update(self, i, cap, stream):
        # Read stream `i` frames in daemon thread
        n, f = 0, self.frames[i]  # frame number, frame array
        while cap.isOpened() and n < f:
            n += 1
            cap.grab()  # .read() = .grab() followed by .retrieve()
            if n % self.vid_stride == 0:
                success, im = cap.retrieve()
                if success:
                    self.imgs[i] = im
                else:
                    LOGGER.warning(
                        "WARNING ⚠️ Video stream unresponsive, please check your IP camera connection."
                    )
                    self.imgs[i] = np.zeros_like(self.imgs[i])
                    cap.open(stream)  # re-open stream if signal was lost
            time.sleep(0.0)  # wait time

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(
            1
        ) == ord(
            "q"
        ):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        im0 = self.imgs.copy()
        if self.transforms:
            im = np.stack([self.transforms(x) for x in im0])  # transforms
        else:
            im = np.stack(
                [
                    letterbox(
                        x, self.img_size, stride=self.stride, auto=self.auto
                    )[0]
                    for x in im0
                ]
            )  # resize
            im = im[..., ::-1].transpose(
                (0, 3, 1, 2)
            )  # BGR to RGB, BHWC to BCHW
            im = np.ascontiguousarray(im)  # contiguous

        return self.sources, im, im0, None, ""

    def __len__(self):
        return len(
            self.sources
        )  # 1E12 frames = 32 streams at 30 FPS for 30 years


def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = (
        f"{os.sep}images{os.sep}",
        f"{os.sep}labels{os.sep}",
    )  # /images/, /labels/ substrings
    return [
        sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths
    ]


class LoadImagesAndLabels(Dataset):
    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
    cache_version = 0.6  # dataset labels *.cache version
    rand_interp_methods = [
        cv2.INTER_NEAREST,
        cv2.INTER_LINEAR,
        cv2.INTER_CUBIC,
        cv2.INTER_AREA,
        cv2.INTER_LANCZOS4,
    ]

    def __init__(
        self,
        path,
        img_size=640,
        batch_size=16,
        augment=False,
        hyp=None,
        rect=False,
        image_weights=False,
        cache_images=False,
        single_cls=False,
        stride=32,
        pad=0.0,
        min_items=0,
        prefix="",
    ):
        self.img_size = img_size
        self.augment = augment
        self.hyp = hyp
        self.image_weights = image_weights
        self.rect = False if image_weights else rect
        self.mosaic = (
            self.augment and not self.rect
        )  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride
        self.path = path
        self.albumentations = (
            Albumentations(size=img_size) if augment else None
        )

        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / "**" / "*.*"), recursive=True)
                    # f = list(p.rglob('*.*'))  # pathlib
                elif p.is_file():  # file
                    with open(p) as t:
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [
                            x.replace("./", parent, 1)
                            if x.startswith("./")
                            else x
                            for x in t
                        ]  # to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # to global path (pathlib)
                else:
                    raise FileNotFoundError(f"{prefix}{p} does not exist")
            self.im_files = sorted(
                x.replace("/", os.sep)
                for x in f
                if x.split(".")[-1].lower() in IMG_FORMATS
            )
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
            assert self.im_files, f"{prefix}No images found"
        except Exception as e:
            raise Exception(
                f"{prefix}Error loading data from {path}: {e}\n{HELP_URL}"
            ) from e

        # Check cache
        self.label_files = img2label_paths(self.im_files)  # labels
        cache_path = (
            p if p.is_file() else Path(self.label_files[0]).parent
        ).with_suffix(".cache")
        try:
            cache, exists = (
                np.load(cache_path, allow_pickle=True).item(),
                True,
            )  # load dict
            assert (
                cache["version"] == self.cache_version
            )  # matches current version
            assert cache["hash"] == get_hash(
                self.label_files + self.im_files
            )  # identical hash
        except Exception:
            cache, exists = (
                self.cache_labels(cache_path, prefix),
                False,
            )  # run cache ops

        # Display cache
        nf, nm, ne, nc, n = cache.pop(
            "results"
        )  # found, missing, empty, corrupt, total
        if exists and LOCAL_RANK in {-1, 0}:
            d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
            tqdm(
                None,
                desc=prefix + d,
                total=n,
                initial=n,
                bar_format=TQDM_BAR_FORMAT,
            )  # display cache results
            if cache["msgs"]:
                LOGGER.info("\n".join(cache["msgs"]))  # display warnings
        assert (
            nf > 0 or not augment
        ), f"{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}"

        # Read cache
        [cache.pop(k) for k in ("hash", "version", "msgs")]  # remove items
        labels, shapes, self.segments = zip(*cache.values())
        nl = len(np.concatenate(labels, 0))  # number of labels
        assert (
            nl > 0 or not augment
        ), f"{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}"
        self.labels = list(labels)
        self.shapes = np.array(shapes)
        self.im_files = list(cache.keys())  # update
        self.label_files = img2label_paths(cache.keys())  # update

        # Filter images
        if min_items:
            include = (
                np.array([len(x) >= min_items for x in self.labels])
                .nonzero()[0]
                .astype(int)
            )
            LOGGER.info(
                f"{prefix}{n - len(include)}/{n} images filtered from dataset"
            )
            self.im_files = [self.im_files[i] for i in include]
            self.label_files = [self.label_files[i] for i in include]
            self.labels = [self.labels[i] for i in include]
            self.segments = [self.segments[i] for i in include]
            self.shapes = self.shapes[include]  # wh

        # Create indices
        n = len(self.shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(int)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n)

        # Update labels
        include_class = (
            []
        )  # filter labels to include only these classes (optional)
        include_class_array = np.array(include_class).reshape(1, -1)
        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
            if include_class:
                j = (label[:, 0:1] == include_class_array).any(1)
                self.labels[i] = label[j]
                if segment:
                    self.segments[i] = segment[j]
            if single_cls:  # single-class training, merge all classes into 0
                self.labels[i][:, 0] = 0

        # Rectangular Training
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.im_files = [self.im_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.segments = [self.segments[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = (
                np.ceil(np.array(shapes) * img_size / stride + pad).astype(int)
                * stride
            )

        # Cache images into RAM/disk for faster training
        if cache_images == "ram" and not self.check_cache_ram(prefix=prefix):
            cache_images = False
        self.ims = [None] * n
        self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
        if cache_images:
            b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
            self.im_hw0, self.im_hw = [None] * n, [None] * n
            fcn = (
                self.cache_images_to_disk
                if cache_images == "disk"
                else self.load_image
            )
            results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
            pbar = tqdm(
                enumerate(results),
                total=n,
                bar_format=TQDM_BAR_FORMAT,
                disable=LOCAL_RANK > 0,
            )
            for i, x in pbar:
                if cache_images == "disk":
                    b += self.npy_files[i].stat().st_size
                else:  # 'ram'
                    (
                        self.ims[i],
                        self.im_hw0[i],
                        self.im_hw[i],
                    ) = x  # im, hw_orig, hw_resized = load_image(self, i)
                    b += self.ims[i].nbytes
                pbar.desc = (
                    f"{prefix}Caching images ({b / gb:.1f}GB {cache_images})"
                )
            pbar.close()

    def check_cache_ram(self, safety_margin=0.1, prefix=""):
        # Check image caching requirements vs available memory
        b, gb = 0, 1 << 30  # bytes of cached images, bytes per gigabytes
        n = min(self.n, 30)  # extrapolate from 30 random images
        for _ in range(n):
            im = cv2.imread(random.choice(self.im_files))  # sample image
            ratio = self.img_size / max(
                im.shape[0], im.shape[1]
            )  # max(h, w)  # ratio
            b += im.nbytes * ratio**2
        mem_required = b * self.n / n  # GB required to cache dataset into RAM
        mem = psutil.virtual_memory()
        cache = (
            mem_required * (1 + safety_margin) < mem.available
        )  # to cache or not to cache, that is the question
        if not cache:
            LOGGER.info(
                f"{prefix}{mem_required / gb:.1f}GB RAM required, "
                f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, "
                f"{'caching images ✅' if cache else 'not caching images ⚠️'}"
            )
        return cache

    def cache_labels(self, path=Path("./labels.cache"), prefix=""):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc, msgs = (
            0,
            0,
            0,
            0,
            [],
        )  # number missing, found, empty, corrupt, messages
        desc = f"{prefix}Scanning {path.parent / path.stem}..."
        with Pool(NUM_THREADS) as pool:
            pbar = tqdm(
                pool.imap(
                    verify_image_label,
                    zip(self.im_files, self.label_files, repeat(prefix)),
                ),
                desc=desc,
                total=len(self.im_files),
                bar_format=TQDM_BAR_FORMAT,
            )
            for (
                im_file,
                lb,
                shape,
                segments,
                nm_f,
                nf_f,
                ne_f,
                nc_f,
                msg,
            ) in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x[im_file] = [lb, shape, segments]
                if msg:
                    msgs.append(msg)
                pbar.desc = (
                    f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
                )

        pbar.close()
        if msgs:
            LOGGER.info("\n".join(msgs))
        if nf == 0:
            LOGGER.warning(
                f"{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}"
            )
        x["hash"] = get_hash(self.label_files + self.im_files)
        x["results"] = nf, nm, ne, nc, len(self.im_files)
        x["msgs"] = msgs  # warnings
        x["version"] = self.cache_version  # cache version
        try:
            np.save(path, x)  # save cache for next time
            path.with_suffix(".cache.npy").rename(path)  # remove .npy suffix
            LOGGER.info(f"{prefix}New cache created: {path}")
        except Exception as e:
            LOGGER.warning(
                f"{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}"
            )  # not writeable
        return x

    def __len__(self):
        return len(self.im_files)

    # def __iter__(self):
    #     self.count = -1
    #     print('ran dataset iter')
    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
    #     return self

    def __getitem__(self, index):
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        mosaic = self.mosaic and random.random() < hyp["mosaic"]
        if mosaic:
            # Load mosaic
            img, labels = self.load_mosaic(index)
            shapes = None

            # MixUp augmentation
            if random.random() < hyp["mixup"]:
                img, labels = mixup(
                    img,
                    labels,
                    *self.load_mosaic(random.randint(0, self.n - 1)),
                )

        else:
            # Load image
            img, (h0, w0), (h, w) = self.load_image(index)

            # Letterbox
            shape = (
                self.batch_shapes[self.batch[index]]
                if self.rect
                else self.img_size
            )  # final letterboxed shape
            img, ratio, pad = letterbox(
                img, shape, auto=False, scaleup=self.augment
            )
            shapes = (h0, w0), (
                (h / h0, w / w0),
                pad,
            )  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(
                    labels[:, 1:],
                    ratio[0] * w,
                    ratio[1] * h,
                    padw=pad[0],
                    padh=pad[1],
                )

            if self.augment:
                img, labels = random_perspective(
                    img,
                    labels,
                    degrees=hyp["degrees"],
                    translate=hyp["translate"],
                    scale=hyp["scale"],
                    shear=hyp["shear"],
                    perspective=hyp["perspective"],
                )

        nl = len(labels)  # number of labels
        if nl:
            labels[:, 1:5] = xyxy2xywhn(
                labels[:, 1:5],
                w=img.shape[1],
                h=img.shape[0],
                clip=True,
                eps=1e-3,
            )

        if self.augment:
            # Albumentations
            img, labels = self.albumentations(img, labels)
            nl = len(labels)  # update after albumentations

            # HSV color-space
            augment_hsv(
                img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"]
            )

            # Flip up-down
            if random.random() < hyp["flipud"]:
                img = np.flipud(img)
                if nl:
                    labels[:, 2] = 1 - labels[:, 2]

            # Flip left-right
            if random.random() < hyp["fliplr"]:
                img = np.fliplr(img)
                if nl:
                    labels[:, 1] = 1 - labels[:, 1]

            # Cutouts
            # labels = cutout(img, labels, p=0.5)
            # nl = len(labels)  # update after cutout

        labels_out = torch.zeros((nl, 6))
        if nl:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)

        return torch.from_numpy(img), labels_out, self.im_files[index], shapes

    def load_image(self, i):
        # Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
        im, f, fn = (
            self.ims[i],
            self.im_files[i],
            self.npy_files[i],
        )
        if im is None:  # not cached in RAM
            if fn.exists():  # load npy
                im = np.load(fn)
            else:  # read image
                im = cv2.imread(f)  # BGR
                assert im is not None, f"Image Not Found {f}"
            h0, w0 = im.shape[:2]  # orig hw
            r = self.img_size / max(h0, w0)  # ratio
            if r != 1:  # if sizes are not equal
                interp = (
                    cv2.INTER_LINEAR
                    if (self.augment or r > 1)
                    else cv2.INTER_AREA
                )
                im = cv2.resize(
                    im,
                    (math.ceil(w0 * r), math.ceil(h0 * r)),
                    interpolation=interp,
                )
            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
        return (
            self.ims[i],
            self.im_hw0[i],
            self.im_hw[i],
        )  # im, hw_original, hw_resized

    def cache_images_to_disk(self, i):
        # Saves an image as an *.npy file for faster loading
        f = self.npy_files[i]
        if not f.exists():
            np.save(f.as_posix(), cv2.imread(self.im_files[i]))

    def load_mosaic(self, index):
        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
        labels4, segments4 = [], []
        s = self.img_size
        yc, xc = (
            int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border
        )  # mosaic center x, y
        indices = [index] + random.choices(
            self.indices, k=3
        )  # 3 additional image indices
        random.shuffle(indices)
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)

            # place img in img4
            if i == 0:  # top left
                img4 = np.full(
                    (s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8
                )  # base image with 4 tiles
                x1a, y1a, x2a, y2a = (
                    max(xc - w, 0),
                    max(yc - h, 0),
                    xc,
                    yc,
                )  # xmin, ymin, xmax, ymax (large image)
                x1b, y1b, x2b, y2b = (
                    w - (x2a - x1a),
                    h - (y2a - y1a),
                    w,
                    h,
                )  # xmin, ymin, xmax, ymax (small image)
            elif i == 1:  # top right
                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
            elif i == 2:  # bottom left
                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
            elif i == 3:  # bottom right
                x1a, y1a, x2a, y2a = (
                    xc,
                    yc,
                    min(xc + w, s * 2),
                    min(s * 2, yc + h),
                )
                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

            img4[y1a:y2a, x1a:x2a] = img[
                y1b:y2b, x1b:x2b
            ]  # img4[ymin:ymax, xmin:xmax]
            padw = x1a - x1b
            padh = y1a - y1b

            # Labels
            labels, segments = (
                self.labels[index].copy(),
                self.segments[index].copy(),
            )
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(
                    labels[:, 1:], w, h, padw, padh
                )  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
            labels4.append(labels)
            segments4.extend(segments)

        # Concat/clip labels
        labels4 = np.concatenate(labels4, 0)
        for x in (labels4[:, 1:], *segments4):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img4, labels4 = replicate(img4, labels4)  # replicate

        # Augment
        img4, labels4, segments4 = copy_paste(
            img4, labels4, segments4, p=self.hyp["copy_paste"]
        )
        img4, labels4 = random_perspective(
            img4,
            labels4,
            segments4,
            degrees=self.hyp["degrees"],
            translate=self.hyp["translate"],
            scale=self.hyp["scale"],
            shear=self.hyp["shear"],
            perspective=self.hyp["perspective"],
            border=self.mosaic_border,
        )  # border to remove

        return img4, labels4

    def load_mosaic9(self, index):
        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
        labels9, segments9 = [], []
        s = self.img_size
        indices = [index] + random.choices(
            self.indices, k=8
        )  # 8 additional image indices
        random.shuffle(indices)
        hp, wp = -1, -1  # height, width previous
        for i, index in enumerate(indices):
            # Load image
            img, _, (h, w) = self.load_image(index)

            # place img in img9
            if i == 0:  # center
                img9 = np.full(
                    (s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8
                )  # base image with 4 tiles
                h0, w0 = h, w
                c = (
                    s,
                    s,
                    s + w,
                    s + h,
                )  # xmin, ymin, xmax, ymax (base) coordinates
            elif i == 1:  # top
                c = s, s - h, s + w, s
            elif i == 2:  # top right
                c = s + wp, s - h, s + wp + w, s
            elif i == 3:  # right
                c = s + w0, s, s + w0 + w, s + h
            elif i == 4:  # bottom right
                c = s + w0, s + hp, s + w0 + w, s + hp + h
            elif i == 5:  # bottom
                c = s + w0 - w, s + h0, s + w0, s + h0 + h
            elif i == 6:  # bottom left
                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
            elif i == 7:  # left
                c = s - w, s + h0 - h, s, s + h0
            elif i == 8:  # top left
                c = s - w, s + h0 - hp - h, s, s + h0 - hp

            padx, pady = c[:2]
            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords

            # Labels
            labels, segments = (
                self.labels[index].copy(),
                self.segments[index].copy(),
            )
            if labels.size:
                labels[:, 1:] = xywhn2xyxy(
                    labels[:, 1:], w, h, padx, pady
                )  # normalized xywh to pixel xyxy format
                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
            labels9.append(labels)
            segments9.extend(segments)

            # Image
            img9[y1:y2, x1:x2] = img[
                y1 - pady :, x1 - padx :
            ]  # img9[ymin:ymax, xmin:xmax]
            hp, wp = h, w  # height, width previous

        # Offset
        yc, xc = (
            int(random.uniform(0, s)) for _ in self.mosaic_border
        )  # mosaic center x, y
        img9 = img9[yc : yc + 2 * s, xc : xc + 2 * s]

        # Concat/clip labels
        labels9 = np.concatenate(labels9, 0)
        labels9[:, [1, 3]] -= xc
        labels9[:, [2, 4]] -= yc
        c = np.array([xc, yc])  # centers
        segments9 = [x - c for x in segments9]

        for x in (labels9[:, 1:], *segments9):
            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
        # img9, labels9 = replicate(img9, labels9)  # replicate

        # Augment
        img9, labels9, segments9 = copy_paste(
            img9, labels9, segments9, p=self.hyp["copy_paste"]
        )
        img9, labels9 = random_perspective(
            img9,
            labels9,
            segments9,
            degrees=self.hyp["degrees"],
            translate=self.hyp["translate"],
            scale=self.hyp["scale"],
            shear=self.hyp["shear"],
            perspective=self.hyp["perspective"],
            border=self.mosaic_border,
        )  # border to remove

        return img9, labels9

    @staticmethod
    def collate_fn(batch):
        im, label, path, shapes = zip(*batch)  # transposed
        for i, lb in enumerate(label):
            lb[:, 0] = i  # add target image index for build_targets()
        return torch.stack(im, 0), torch.cat(label, 0), path, shapes

    @staticmethod
    def collate_fn4(batch):
        im, label, path, shapes = zip(*batch)  # transposed
        n = len(shapes) // 4
        im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
            i *= 4
            if random.random() < 0.5:
                im1 = F.interpolate(
                    im[i].unsqueeze(0).float(),
                    scale_factor=2.0,
                    mode="bilinear",
                    align_corners=False,
                )[0].type(im[i].type())
                lb = label[i]
            else:
                im1 = torch.cat(
                    (
                        torch.cat((im[i], im[i + 1]), 1),
                        torch.cat((im[i + 2], im[i + 3]), 1),
                    ),
                    2,
                )
                lb = (
                    torch.cat(
                        (
                            label[i],
                            label[i + 1] + ho,
                            label[i + 2] + wo,
                            label[i + 3] + ho + wo,
                        ),
                        0,
                    )
                    * s
                )
            im4.append(im1)
            label4.append(lb)

        for i, lb in enumerate(label4):
            lb[:, 0] = i  # add target image index for build_targets()

        return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4


# Ancillary functions --------------------------------------------------------------------------------------------------
def flatten_recursive(path=DATASETS_DIR / "coco128"):
    # Flatten a recursive directory by bringing all files to top level
    new_path = Path(f"{str(path)}_flat")
    if os.path.exists(new_path):
        shutil.rmtree(new_path)  # delete output folder
    os.makedirs(new_path)  # make new output folder
    for file in tqdm(glob.glob(f"{str(Path(path))}/**/*.*", recursive=True)):
        shutil.copyfile(file, new_path / Path(file).name)


def extract_boxes(
    path=DATASETS_DIR / "coco128",
):  # from utils.dataloaders import *; extract_boxes()
    # Convert detection dataset into classification dataset, with one directory per class
    path = Path(path)  # images dir
    shutil.rmtree(path / "classification") if (
        path / "classification"
    ).is_dir() else None  # remove existing
    files = list(path.rglob("*.*"))
    n = len(files)  # number of files
    for im_file in tqdm(files, total=n):
        if im_file.suffix[1:] in IMG_FORMATS:
            # image
            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
            h, w = im.shape[:2]

            # labels
            lb_file = Path(img2label_paths([str(im_file)])[0])
            if Path(lb_file).exists():
                with open(lb_file) as f:
                    lb = np.array(
                        [x.split() for x in f.read().strip().splitlines()],
                        dtype=np.float32,
                    )  # labels

                for j, x in enumerate(lb):
                    c = int(x[0])  # class
                    f = (
                        (path / "classifier")
                        / f"{c}"
                        / f"{path.stem}_{im_file.stem}_{j}.jpg"
                    )  # new filename
                    if not f.parent.is_dir():
                        f.parent.mkdir(parents=True)

                    b = x[1:] * [w, h, w, h]  # box
                    # b[2:] = b[2:].max()  # rectangle to square
                    b[2:] = b[2:] * 1.2 + 3  # pad
                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)

                    b[[0, 2]] = np.clip(
                        b[[0, 2]], 0, w
                    )  # clip boxes outside of image
                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
                    assert cv2.imwrite(
                        str(f), im[b[1] : b[3], b[0] : b[2]]
                    ), f"box failure in {f}"


def autosplit(
    path=DATASETS_DIR / "coco128/images",
    weights=(0.9, 0.1, 0.0),
    annotated_only=False,
):
    """Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
    Usage: from utils.dataloaders import *; autosplit()
    Arguments
        path:            Path to images directory
        weights:         Train, val, test weights (list, tuple)
        annotated_only:  Only use images with an annotated txt file
    """
    path = Path(path)  # images dir
    files = sorted(
        x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS
    )  # image files only
    n = len(files)  # number of files
    random.seed(0)  # for reproducibility
    indices = random.choices(
        [0, 1, 2], weights=weights, k=n
    )  # assign each image to a split

    txt = [
        "autosplit_train.txt",
        "autosplit_val.txt",
        "autosplit_test.txt",
    ]  # 3 txt files
    for x in txt:
        if (path.parent / x).exists():
            (path.parent / x).unlink()  # remove existing

    print(
        f"Autosplitting images from {path}"
        + ", using *.txt labeled images only" * annotated_only
    )
    for i, img in tqdm(zip(indices, files), total=n):
        if (
            not annotated_only or Path(img2label_paths([str(img)])[0]).exists()
        ):  # check label
            with open(path.parent / txt[i], "a") as f:
                f.write(
                    f"./{img.relative_to(path.parent).as_posix()}" + "\n"
                )  # add image to txt file


def verify_image_label(args):
    # Verify one image-label pair
    im_file, lb_file, prefix = args
    nm, nf, ne, nc, msg, segments = (
        0,
        0,
        0,
        0,
        "",
        [],
    )  # number (missing, found, empty, corrupt), message, segments
    try:
        # verify images
        im = Image.open(im_file)
        im.verify()  # PIL verify
        shape = exif_size(im)  # image size
        assert (shape[0] > 9) & (
            shape[1] > 9
        ), f"image size {shape} <10 pixels"
        assert (
            im.format.lower() in IMG_FORMATS
        ), f"invalid image format {im.format}"
        if im.format.lower() in ("jpg", "jpeg"):
            with open(im_file, "rb") as f:
                f.seek(-2, 2)
                if f.read() != b"\xff\xd9":  # corrupt JPEG
                    ImageOps.exif_transpose(Image.open(im_file)).save(
                        im_file, "JPEG", subsampling=0, quality=100
                    )
                    msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved"

        # verify labels
        if os.path.isfile(lb_file):
            nf = 1  # label found
            with open(lb_file) as f:
                lb = [
                    x.split() for x in f.read().strip().splitlines() if len(x)
                ]
                if any(len(x) > 6 for x in lb):  # is segment
                    classes = np.array([x[0] for x in lb], dtype=np.float32)
                    segments = [
                        np.array(x[1:], dtype=np.float32).reshape(-1, 2)
                        for x in lb
                    ]  # (cls, xy1...)
                    lb = np.concatenate(
                        (classes.reshape(-1, 1), segments2boxes(segments)), 1
                    )  # (cls, xywh)
                lb = np.array(lb, dtype=np.float32)
            nl = len(lb)
            if nl:
                assert (
                    lb.shape[1] == 5
                ), f"labels require 5 columns, {lb.shape[1]} columns detected"
                assert (lb >= 0).all(), f"negative label values {lb[lb < 0]}"
                assert (
                    lb[:, 1:] <= 1
                ).all(), f"non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}"
                _, i = np.unique(lb, axis=0, return_index=True)
                if len(i) < nl:  # duplicate row check
                    lb = lb[i]  # remove duplicates
                    if segments:
                        segments = [segments[x] for x in i]
                    msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed"
            else:
                ne = 1  # label empty
                lb = np.zeros((0, 5), dtype=np.float32)
        else:
            nm = 1  # label missing
            lb = np.zeros((0, 5), dtype=np.float32)
        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
    except Exception as e:
        nc = 1
        msg = (
            f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}"
        )
        return [None, None, None, None, nm, nf, ne, nc, msg]


class HUBDatasetStats:
    """Class for generating HUB dataset JSON and `-hub` dataset directory

    Arguments
        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
        autodownload:   Attempt to download dataset if not found locally

    Usage
        from utils.dataloaders import HUBDatasetStats
        stats = HUBDatasetStats('coco128.yaml', autodownload=True)  # usage 1
        stats = HUBDatasetStats('path/to/coco128.zip')  # usage 2
        stats.get_json(save=False)
        stats.process_images()
    """

    def __init__(self, path="coco128.yaml", autodownload=False):
        # Initialize class
        zipped, data_dir, yaml_path = self._unzip(Path(path))
        try:
            with open(check_yaml(yaml_path), errors="ignore") as f:
                data = yaml.safe_load(f)  # data dict
                if zipped:
                    data["path"] = data_dir
        except Exception as e:
            raise Exception("error/HUB/dataset_stats/yaml_load") from e

        check_dataset(data, autodownload)  # download dataset if missing
        self.hub_dir = Path(data["path"] + "-hub")
        self.im_dir = self.hub_dir / "images"
        self.im_dir.mkdir(parents=True, exist_ok=True)  # makes /images
        self.stats = {
            "nc": data["nc"],
            "names": list(data["names"].values()),
        }  # statistics dictionary
        self.data = data

    @staticmethod
    def _find_yaml(dir):
        # Return data.yaml file
        files = list(dir.glob("*.yaml")) or list(
            dir.rglob("*.yaml")
        )  # try root level first and then recursive
        assert files, f"No *.yaml file found in {dir}"
        if len(files) > 1:
            files = [
                f for f in files if f.stem == dir.stem
            ]  # prefer *.yaml files that match dir name
            assert (
                files
            ), f"Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed"
        assert (
            len(files) == 1
        ), f"Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}"
        return files[0]

    def _unzip(self, path):
        # Unzip data.zip
        if not str(path).endswith(".zip"):  # path is data.yaml
            return False, None, path
        assert Path(path).is_file(), f"Error unzipping {path}, file not found"
        unzip_file(path, path=path.parent)
        dir = path.with_suffix("")  # dataset directory == zip name
        assert (
            dir.is_dir()
        ), f"Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/"
        return (
            True,
            str(dir),
            self._find_yaml(dir),
        )  # zipped, data_dir, yaml_path

    def _hub_ops(self, f, max_dim=1920):
        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
        f_new = self.im_dir / Path(f).name  # dataset-hub image filename
        try:  # use PIL
            im = Image.open(f)
            r = max_dim / max(im.height, im.width)  # ratio
            if r < 1.0:  # image too large
                im = im.resize((int(im.width * r), int(im.height * r)))
            im.save(f_new, "JPEG", quality=50, optimize=True)  # save
        except Exception as e:  # use OpenCV
            LOGGER.info(f"WARNING ⚠️ HUB ops PIL failure {f}: {e}")
            im = cv2.imread(f)
            im_height, im_width = im.shape[:2]
            r = max_dim / max(im_height, im_width)  # ratio
            if r < 1.0:  # image too large
                im = cv2.resize(
                    im,
                    (int(im_width * r), int(im_height * r)),
                    interpolation=cv2.INTER_AREA,
                )
            cv2.imwrite(str(f_new), im)

    def get_json(self, save=False, verbose=False):
        # Return dataset JSON for Ultralytics HUB
        def _round(labels):
            # Update labels to integer class and 6 decimal place floats
            return [
                [int(c), *(round(x, 4) for x in points)]
                for c, *points in labels
            ]

        for split in "train", "val", "test":
            if self.data.get(split) is None:
                self.stats[split] = None  # i.e. no test set
                continue
            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
            x = np.array(
                [
                    np.bincount(
                        label[:, 0].astype(int), minlength=self.data["nc"]
                    )
                    for label in tqdm(
                        dataset.labels, total=dataset.n, desc="Statistics"
                    )
                ]
            )  # shape(128x80)
            self.stats[split] = {
                "instance_stats": {
                    "total": int(x.sum()),
                    "per_class": x.sum(0).tolist(),
                },
                "image_stats": {
                    "total": dataset.n,
                    "unlabelled": int(np.all(x == 0, 1).sum()),
                    "per_class": (x > 0).sum(0).tolist(),
                },
                "labels": [
                    {str(Path(k).name): _round(v.tolist())}
                    for k, v in zip(dataset.im_files, dataset.labels)
                ],
            }

        # Save, print and return
        if save:
            stats_path = self.hub_dir / "stats.json"
            print(f"Saving {stats_path.resolve()}...")
            with open(stats_path, "w") as f:
                json.dump(self.stats, f)  # save stats.json
        if verbose:
            print(json.dumps(self.stats, indent=2, sort_keys=False))
        return self.stats

    def process_images(self):
        # Compress images for Ultralytics HUB
        for split in "train", "val", "test":
            if self.data.get(split) is None:
                continue
            dataset = LoadImagesAndLabels(self.data[split])  # load dataset
            desc = f"{split} images"
            for _ in tqdm(
                ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files),
                total=dataset.n,
                desc=desc,
            ):
                pass
        print(f"Done. All images saved to {self.im_dir}")
        return self.im_dir


# Classification dataloaders -------------------------------------------------------------------------------------------
class ClassificationDataset(torchvision.datasets.ImageFolder):
    """
    YOLOv5 Classification Dataset.
    Arguments
        root:  Dataset path
        transform:  torchvision transforms, used by default
        album_transform: Albumentations transforms, used if installed
    """

    def __init__(self, root, augment, imgsz, cache=False):
        super().__init__(root=root)
        self.torch_transforms = classify_transforms(imgsz)
        self.album_transforms = (
            classify_albumentations(augment, imgsz) if augment else None
        )
        self.cache_ram = cache is True or cache == "ram"
        self.cache_disk = cache == "disk"
        self.samples = [
            list(x) + [Path(x[0]).with_suffix(".npy"), None]
            for x in self.samples
        ]  # file, index, npy, im

    def __getitem__(self, i):
        f, j, fn, im = self.samples[
            i
        ]  # filename, index, filename.with_suffix('.npy'), image
        if self.cache_ram and im is None:
            im = self.samples[i][3] = cv2.imread(f)
        elif self.cache_disk:
            if not fn.exists():  # load npy
                np.save(fn.as_posix(), cv2.imread(f))
            im = np.load(fn)
        else:  # read image
            im = cv2.imread(f)  # BGR
        if self.album_transforms:
            sample = self.album_transforms(
                image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
            )["image"]
        else:
            sample = self.torch_transforms(im)
        return sample, j


def create_classification_dataloader(
    path,
    imgsz=224,
    batch_size=16,
    augment=True,
    cache=False,
    rank=-1,
    workers=8,
    shuffle=True,
):
    # Returns Dataloader object to be used with YOLOv5 Classifier
    with torch_distributed_zero_first(
        rank
    ):  # init dataset *.cache only once if DDP
        dataset = ClassificationDataset(
            root=path, imgsz=imgsz, augment=augment, cache=cache
        )
    batch_size = min(batch_size, len(dataset))
    nd = torch.cuda.device_count()
    nw = min(
        [
            os.cpu_count() // max(nd, 1),
            batch_size if batch_size > 1 else 0,
            workers,
        ]
    )
    sampler = (
        None
        if rank == -1
        else distributed.DistributedSampler(dataset, shuffle=shuffle)
    )
    generator = torch.Generator()
    generator.manual_seed(6148914691236517205 + RANK)
    return InfiniteDataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=shuffle and sampler is None,
        num_workers=nw,
        sampler=sampler,
        pin_memory=PIN_MEMORY,
        worker_init_fn=seed_worker,
        generator=generator,
    )  # or DataLoader(persistent_workers=True)