Spaces:
Runtime error
Runtime error
File size: 35,815 Bytes
5b2fcab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 model on a custom dataset
Usage:
$ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import argparse
import logging
import math
import os
import random
import sys
import time
from copy import deepcopy
from pathlib import Path
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, Adam, lr_scheduler
from tqdm import tqdm
FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path
import val # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.downloads import attempt_download
from utils.general import (
check_dataset,
check_file,
check_git_status,
check_img_size,
check_requirements,
check_suffix,
check_yaml,
colorstr,
get_latest_run,
increment_path,
init_seeds,
labels_to_class_weights,
labels_to_image_weights,
methods,
one_cycle,
print_mutation,
set_logging,
strip_optimizer,
)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve, plot_labels
from utils.torch_utils import (
EarlyStopping,
ModelEMA,
de_parallel,
intersect_dicts,
select_device,
torch_distributed_zero_first,
)
LOGGER = logging.getLogger(__name__)
LOCAL_RANK = int(
os.getenv("LOCAL_RANK", -1)
) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
def train(hyp, opt, device, callbacks): # path/to/hyp.yaml or hyp dictionary
(
save_dir,
epochs,
batch_size,
weights,
single_cls,
evolve,
data,
cfg,
resume,
noval,
nosave,
workers,
freeze,
) = (
Path(opt.save_dir),
opt.epochs,
opt.batch_size,
opt.weights,
opt.single_cls,
opt.evolve,
opt.data,
opt.cfg,
opt.resume,
opt.noval,
opt.nosave,
opt.workers,
opt.freeze,
)
# Directories
w = save_dir / "weights" # weights dir
w.mkdir(parents=True, exist_ok=True) # make dir
last, best = w / "last.pt", w / "best.pt"
# Hyperparameters
if isinstance(hyp, str):
with open(hyp) as f:
hyp = yaml.safe_load(f) # load hyps dict
LOGGER.info(
colorstr("hyperparameters: ")
+ ", ".join(f"{k}={v}" for k, v in hyp.items())
)
# Save run settings
with open(save_dir / "hyp.yaml", "w") as f:
yaml.safe_dump(hyp, f, sort_keys=False)
with open(save_dir / "opt.yaml", "w") as f:
yaml.safe_dump(vars(opt), f, sort_keys=False)
data_dict = None
# Loggers
if RANK in [-1, 0]:
loggers = Loggers(
save_dir, weights, opt, hyp, LOGGER
) # loggers instance
if loggers.wandb:
data_dict = loggers.wandb.data_dict
if resume:
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp
# Register actions
for k in methods(loggers):
callbacks.register_action(k, callback=getattr(loggers, k))
# Config
plots = not evolve # create plots
cuda = device.type != "cpu"
init_seeds(1 + RANK)
with torch_distributed_zero_first(RANK):
data_dict = data_dict or check_dataset(data) # check if None
train_path, val_path = data_dict["train"], data_dict["val"]
nc = 1 if single_cls else int(data_dict["nc"]) # number of classes
names = (
["item"]
if single_cls and len(data_dict["names"]) != 1
else data_dict["names"]
) # class names
assert (
len(names) == nc
), f"{len(names)} names found for nc={nc} dataset in {data}" # check
is_coco = data.endswith("coco.yaml") and nc == 80 # COCO dataset
# Model
check_suffix(weights, ".pt") # check weights
pretrained = weights.endswith(".pt")
if pretrained:
with torch_distributed_zero_first(RANK):
weights = attempt_download(
weights
) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
model = Model(
cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")
).to(
device
) # create
exclude = (
["anchor"] if (cfg or hyp.get("anchors")) and not resume else []
) # exclude keys
csd = (
ckpt["model"].float().state_dict()
) # checkpoint state_dict as FP32
csd = intersect_dicts(
csd, model.state_dict(), exclude=exclude
) # intersect
model.load_state_dict(csd, strict=False) # load
LOGGER.info(
f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}"
) # report
else:
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(
device
) # create
# Freeze
freeze = [f"model.{x}." for x in range(freeze)] # layers to freeze
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print(f"freezing {k}")
v.requires_grad = False
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(
round(nbs / batch_size), 1
) # accumulate loss before optimizing
hyp["weight_decay"] *= batch_size * accumulate / nbs # scale weight_decay
LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
g0, g1, g2 = [], [], [] # optimizer parameter groups
for v in model.modules():
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter): # bias
g2.append(v.bias)
if isinstance(v, nn.BatchNorm2d): # weight (no decay)
g0.append(v.weight)
elif hasattr(v, "weight") and isinstance(
v.weight, nn.Parameter
): # weight (with decay)
g1.append(v.weight)
if opt.adam:
optimizer = Adam(
g0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
) # adjust beta1 to momentum
else:
optimizer = SGD(
g0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
)
optimizer.add_param_group(
{"params": g1, "weight_decay": hyp["weight_decay"]}
) # add g1 with weight_decay
optimizer.add_param_group({"params": g2}) # add g2 (biases)
LOGGER.info(
f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias"
)
del g0, g1, g2
# Scheduler
if opt.linear_lr:
lf = (
lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp["lrf"]) + hyp["lrf"]
) # linear
else:
lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
scheduler = lr_scheduler.LambdaLR(
optimizer, lr_lambda=lf
) # plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema = ModelEMA(model) if RANK in [-1, 0] else None
# Resume
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
if ckpt["optimizer"] is not None:
optimizer.load_state_dict(ckpt["optimizer"])
best_fitness = ckpt["best_fitness"]
# EMA
if ema and ckpt.get("ema"):
ema.ema.load_state_dict(ckpt["ema"].float().state_dict())
ema.updates = ckpt["updates"]
# Epochs
start_epoch = ckpt["epoch"] + 1
if resume:
assert (
start_epoch > 0
), f"{weights} training to {epochs} epochs is finished, nothing to resume."
if epochs < start_epoch:
LOGGER.info(
f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
)
epochs += ckpt["epoch"] # finetune additional epochs
del ckpt, csd
# Image sizes
gs = max(int(model.stride.max()), 32) # grid size (max stride)
nl = model.model[
-1
].nl # number of detection layers (used for scaling hyp['obj'])
imgsz = check_img_size(
opt.imgsz, gs, floor=gs * 2
) # verify imgsz is gs-multiple
# DP mode
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
logging.warning(
"DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n"
"See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started."
)
model = torch.nn.DataParallel(model)
# SyncBatchNorm
if opt.sync_bn and cuda and RANK != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
LOGGER.info("Using SyncBatchNorm()")
# Trainloader
train_loader, dataset = create_dataloader(
train_path,
imgsz,
batch_size // WORLD_SIZE,
gs,
single_cls,
hyp=hyp,
augment=True,
cache=opt.cache,
rect=opt.rect,
rank=RANK,
workers=workers,
image_weights=opt.image_weights,
quad=opt.quad,
prefix=colorstr("train: "),
)
mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class
nb = len(train_loader) # number of batches
assert (
mlc < nc
), f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"
# Process 0
if RANK in [-1, 0]:
val_loader = create_dataloader(
val_path,
imgsz,
batch_size // WORLD_SIZE * 2,
gs,
single_cls,
hyp=hyp,
cache=None if noval else opt.cache,
rect=True,
rank=-1,
workers=workers,
pad=0.5,
prefix=colorstr("val: "),
)[0]
if not resume:
labels = np.concatenate(dataset.labels, 0)
# c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
plot_labels(labels, names, save_dir)
# Anchors
if not opt.noautoanchor:
check_anchors(
dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz
)
model.half().float() # pre-reduce anchor precision
callbacks.run("on_pretrain_routine_end")
# DDP mode
if cuda and RANK != -1:
model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
# Model parameters
hyp["box"] *= 3.0 / nl # scale to layers
hyp["cls"] *= nc / 80.0 * 3.0 / nl # scale to classes and layers
hyp["obj"] *= (
(imgsz / 640) ** 2 * 3.0 / nl
) # scale to image size and layers
hyp["label_smoothing"] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.class_weights = (
labels_to_class_weights(dataset.labels, nc).to(device) * nc
) # attach class weights
model.names = names
# Start training
t0 = time.time()
nw = max(
round(hyp["warmup_epochs"] * nb), 1000
) # number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step = -1
maps = np.zeros(nc) # mAP per class
results = (
0,
0,
0,
0,
0,
0,
0,
) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda)
stopper = EarlyStopping(patience=opt.patience)
compute_loss = ComputeLoss(model) # init loss class
LOGGER.info(
f"Image sizes {imgsz} train, {imgsz} val\n"
f"Using {train_loader.num_workers} dataloader workers\n"
f"Logging results to {colorstr('bold', save_dir)}\n"
f"Starting training for {epochs} epochs..."
)
for epoch in range(
start_epoch, epochs
): # epoch ------------------------------------------------------------------
model.train()
# Update image weights (optional, single-GPU only)
if opt.image_weights:
cw = (
model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
) # class weights
iw = labels_to_image_weights(
dataset.labels, nc=nc, class_weights=cw
) # image weights
dataset.indices = random.choices(
range(dataset.n), weights=iw, k=dataset.n
) # rand weighted idx
# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
mloss = torch.zeros(3, device=device) # mean losses
if RANK != -1:
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(
("\n" + "%10s" * 7)
% ("Epoch", "gpu_mem", "box", "obj", "cls", "labels", "img_size")
)
if RANK in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad()
for i, (
imgs,
targets,
paths,
_,
) in (
pbar
): # batch -------------------------------------------------------------
ni = (
i + nb * epoch
) # number integrated batches (since train start)
imgs = (
imgs.to(device, non_blocking=True).float() / 255.0
) # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(
1, np.interp(ni, xi, [1, nbs / batch_size]).round()
)
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x["lr"] = np.interp(
ni,
xi,
[
hyp["warmup_bias_lr"] if j == 2 else 0.0,
x["initial_lr"] * lf(epoch),
],
)
if "momentum" in x:
x["momentum"] = np.interp(
ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
)
# Multi-scale
if opt.multi_scale:
sz = (
random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs
) # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [
math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(
imgs, size=ns, mode="bilinear", align_corners=False
)
# Forward
with amp.autocast(enabled=cuda):
pred = model(imgs) # forward
loss, loss_items = compute_loss(
pred, targets.to(device)
) # loss scaled by batch_size
if RANK != -1:
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.0
# Backward
scaler.scale(loss).backward()
# Optimize
if ni - last_opt_step >= accumulate:
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
last_opt_step = ni
# Log
if RANK in [-1, 0]:
mloss = (mloss * i + loss_items) / (
i + 1
) # update mean losses
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB)
pbar.set_description(
("%10s" * 2 + "%10.4g" * 5)
% (
f"{epoch}/{epochs - 1}",
mem,
*mloss,
targets.shape[0],
imgs.shape[-1],
)
)
callbacks.run(
"on_train_batch_end",
ni,
model,
imgs,
targets,
paths,
plots,
opt.sync_bn,
)
# end batch ------------------------------------------------------------------------------------------------
# Scheduler
lr = [x["lr"] for x in optimizer.param_groups] # for loggers
scheduler.step()
if RANK in [-1, 0]:
# mAP
callbacks.run("on_train_epoch_end", epoch=epoch)
ema.update_attr(
model,
include=[
"yaml",
"nc",
"hyp",
"names",
"stride",
"class_weights",
],
)
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
if not noval or final_epoch: # Calculate mAP
results, maps, _ = val.run(
data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=ema.ema,
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
save_json=is_coco and final_epoch,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
callbacks=callbacks,
compute_loss=compute_loss,
)
# Update best mAP
fi = fitness(
np.array(results).reshape(1, -1)
) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
if fi > best_fitness:
best_fitness = fi
log_vals = list(mloss) + list(results) + lr
callbacks.run(
"on_fit_epoch_end", log_vals, epoch, best_fitness, fi
)
# Save model
if (not nosave) or (final_epoch and not evolve): # if save
ckpt = {
"epoch": epoch,
"best_fitness": best_fitness,
"model": deepcopy(de_parallel(model)).half(),
"ema": deepcopy(ema.ema).half(),
"updates": ema.updates,
"optimizer": optimizer.state_dict(),
"wandb_id": loggers.wandb.wandb_run.id
if loggers.wandb
else None,
}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
del ckpt
callbacks.run(
"on_model_save", last, epoch, final_epoch, best_fitness, fi
)
# Stop Single-GPU
if RANK == -1 and stopper(epoch=epoch, fitness=fi):
break
# Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
# stop = stopper(epoch=epoch, fitness=fi)
# if RANK == 0:
# dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks
# Stop DPP
# with torch_distributed_zero_first(RANK):
# if stop:
# break # must break all DDP ranks
# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if RANK in [-1, 0]:
LOGGER.info(
f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours."
)
if not evolve:
if is_coco: # COCO dataset
for m in (
[last, best] if best.exists() else [last]
): # speed, mAP tests
results, _, _ = val.run(
data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=attempt_load(m, device).half(),
iou_thres=0.7, # NMS IoU threshold for best pycocotools results
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
save_json=True,
plots=False,
)
# Strip optimizers
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
callbacks.run("on_train_end", last, best, plots, epoch)
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
torch.cuda.empty_cache()
return results
def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights",
type=str,
default="yolov5s.pt",
help="initial weights path",
)
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
parser.add_argument(
"--data",
type=str,
default="data/coco128.yaml",
help="dataset.yaml path",
)
parser.add_argument(
"--hyp",
type=str,
default="data/hyps/hyp.scratch.yaml",
help="hyperparameters path",
)
parser.add_argument("--epochs", type=int, default=300)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="total batch size for all GPUs",
)
parser.add_argument(
"--imgsz",
"--img",
"--img-size",
type=int,
default=640,
help="train, val image size (pixels)",
)
parser.add_argument(
"--rect", action="store_true", help="rectangular training"
)
parser.add_argument(
"--resume",
nargs="?",
const=True,
default=False,
help="resume most recent training",
)
parser.add_argument(
"--nosave", action="store_true", help="only save final checkpoint"
)
parser.add_argument(
"--noval", action="store_true", help="only validate final epoch"
)
parser.add_argument(
"--noautoanchor", action="store_true", help="disable autoanchor check"
)
parser.add_argument(
"--evolve",
type=int,
nargs="?",
const=300,
help="evolve hyperparameters for x generations",
)
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
parser.add_argument(
"--cache",
type=str,
nargs="?",
const="ram",
help='--cache images in "ram" (default) or "disk"',
)
parser.add_argument(
"--image-weights",
action="store_true",
help="use weighted image selection for training",
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--multi-scale", action="store_true", help="vary img-size +/- 50%%"
)
parser.add_argument(
"--single-cls",
action="store_true",
help="train multi-class data as single-class",
)
parser.add_argument(
"--adam", action="store_true", help="use torch.optim.Adam() optimizer"
)
parser.add_argument(
"--sync-bn",
action="store_true",
help="use SyncBatchNorm, only available in DDP mode",
)
parser.add_argument(
"--workers",
type=int,
default=8,
help="maximum number of dataloader workers",
)
parser.add_argument(
"--project", default="runs/train", help="save to project/name"
)
parser.add_argument("--entity", default=None, help="W&B entity")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument("--quad", action="store_true", help="quad dataloader")
parser.add_argument("--linear-lr", action="store_true", help="linear LR")
parser.add_argument(
"--label-smoothing",
type=float,
default=0.0,
help="Label smoothing epsilon",
)
parser.add_argument(
"--upload_dataset",
action="store_true",
help="Upload dataset as W&B artifact table",
)
parser.add_argument(
"--bbox_interval",
type=int,
default=-1,
help="Set bounding-box image logging interval for W&B",
)
parser.add_argument(
"--save_period",
type=int,
default=-1,
help='Log model after every "save_period" epoch',
)
parser.add_argument(
"--artifact_alias",
type=str,
default="latest",
help="version of dataset artifact to be used",
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="DDP parameter, do not modify",
)
parser.add_argument(
"--freeze",
type=int,
default=0,
help="Number of layers to freeze. backbone=10, all=24",
)
parser.add_argument(
"--patience",
type=int,
default=100,
help="EarlyStopping patience (epochs without improvement)",
)
opt = parser.parse_known_args()[0] if known else parser.parse_args()
return opt
def main(opt, callbacks=Callbacks()):
# Checks
set_logging(RANK)
if RANK in [-1, 0]:
print(
colorstr("train: ")
+ ", ".join(f"{k}={v}" for k, v in vars(opt).items())
)
check_git_status()
check_requirements(
requirements=FILE.parent / "requirements.txt", exclude=["thop"]
)
# Resume
if (
opt.resume and not check_wandb_resume(opt) and not opt.evolve
): # resume an interrupted run
ckpt = (
opt.resume if isinstance(opt.resume, str) else get_latest_run()
) # specified or most recent path
assert os.path.isfile(
ckpt
), "ERROR: --resume checkpoint does not exist"
with open(Path(ckpt).parent.parent / "opt.yaml") as f:
opt = argparse.Namespace(**yaml.safe_load(f)) # replace
opt.cfg, opt.weights, opt.resume = "", ckpt, True # reinstate
LOGGER.info(f"Resuming training from {ckpt}")
else:
opt.data, opt.cfg, opt.hyp = (
check_file(opt.data),
check_yaml(opt.cfg),
check_yaml(opt.hyp),
) # check YAMLs
assert len(opt.cfg) or len(
opt.weights
), "either --cfg or --weights must be specified"
if opt.evolve:
opt.project = "runs/evolve"
opt.exist_ok = opt.resume
opt.save_dir = str(
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
)
# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
from datetime import timedelta
assert (
torch.cuda.device_count() > LOCAL_RANK
), "insufficient CUDA devices for DDP command"
assert (
opt.batch_size % WORLD_SIZE == 0
), "--batch-size must be multiple of CUDA device count"
assert (
not opt.image_weights
), "--image-weights argument is not compatible with DDP training"
assert (
not opt.evolve
), "--evolve argument is not compatible with DDP training"
torch.cuda.set_device(LOCAL_RANK)
device = torch.device("cuda", LOCAL_RANK)
dist.init_process_group(
backend="nccl" if dist.is_nccl_available() else "gloo"
)
# Train
if not opt.evolve:
train(opt.hyp, opt, device, callbacks)
if WORLD_SIZE > 1 and RANK == 0:
_ = [
print("Destroying process group... ", end=""),
dist.destroy_process_group(),
print("Done."),
]
# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta = {
"lr0": (
1,
1e-5,
1e-1,
), # initial learning rate (SGD=1E-2, Adam=1E-3)
"lrf": (
1,
0.01,
1.0,
), # final OneCycleLR learning rate (lr0 * lrf)
"momentum": (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
"weight_decay": (1, 0.0, 0.001), # optimizer weight decay
"warmup_epochs": (1, 0.0, 5.0), # warmup epochs (fractions ok)
"warmup_momentum": (1, 0.0, 0.95), # warmup initial momentum
"warmup_bias_lr": (1, 0.0, 0.2), # warmup initial bias lr
"box": (1, 0.02, 0.2), # box loss gain
"cls": (1, 0.2, 4.0), # cls loss gain
"cls_pw": (1, 0.5, 2.0), # cls BCELoss positive_weight
"obj": (1, 0.2, 4.0), # obj loss gain (scale with pixels)
"obj_pw": (1, 0.5, 2.0), # obj BCELoss positive_weight
"iou_t": (0, 0.1, 0.7), # IoU training threshold
"anchor_t": (1, 2.0, 8.0), # anchor-multiple threshold
"anchors": (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
"fl_gamma": (
0,
0.0,
2.0,
), # focal loss gamma (efficientDet default gamma=1.5)
"hsv_h": (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
"hsv_s": (
1,
0.0,
0.9,
), # image HSV-Saturation augmentation (fraction)
"hsv_v": (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
"degrees": (1, 0.0, 45.0), # image rotation (+/- deg)
"translate": (1, 0.0, 0.9), # image translation (+/- fraction)
"scale": (1, 0.0, 0.9), # image scale (+/- gain)
"shear": (1, 0.0, 10.0), # image shear (+/- deg)
"perspective": (
0,
0.0,
0.001,
), # image perspective (+/- fraction), range 0-0.001
"flipud": (1, 0.0, 1.0), # image flip up-down (probability)
"fliplr": (0, 0.0, 1.0), # image flip left-right (probability)
"mosaic": (1, 0.0, 1.0), # image mixup (probability)
"mixup": (1, 0.0, 1.0), # image mixup (probability)
"copy_paste": (1, 0.0, 1.0),
} # segment copy-paste (probability)
with open(opt.hyp) as f:
hyp = yaml.safe_load(f) # load hyps dict
if "anchors" not in hyp: # anchors commented in hyp.yaml
hyp["anchors"] = 3
opt.noval, opt.nosave, save_dir = (
True,
True,
Path(opt.save_dir),
) # only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
evolve_yaml, evolve_csv = (
save_dir / "hyp_evolve.yaml",
save_dir / "evolve.csv",
)
if opt.bucket:
os.system(
f"gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}"
) # download evolve.csv if exists
for _ in range(opt.evolve): # generations to evolve
if (
evolve_csv.exists()
): # if evolve.csv exists: select best hyps and mutate
# Select parent(s)
parent = (
"single" # parent selection method: 'single' or 'weighted'
)
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() + 1e-6 # weights (sum > 0)
if parent == "single" or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[
random.choices(range(n), weights=w)[0]
] # weighted selection
elif parent == "weighted":
x = (x * w.reshape(n, 1)).sum(
0
) / w.sum() # weighted combination
# Mutate
mp, s = 0.8, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(
v == 1
): # mutate until a change occurs (prevent duplicates)
v = (
g
* (npr.random(ng) < mp)
* npr.randn(ng)
* npr.random()
* s
+ 1
).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate
# Constrain to limits
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits
# Train mutation
results = train(hyp.copy(), opt, device, callbacks)
# Write mutation results
print_mutation(results, hyp.copy(), save_dir, opt.bucket)
# Plot results
plot_evolve(evolve_csv)
print(
f"Hyperparameter evolution finished\n"
f"Results saved to {colorstr('bold', save_dir)}\n"
f"Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}"
)
def run(**kwargs):
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
if __name__ == "__main__":
opt = parse_opt()
main(opt)
|