File size: 35,815 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Train a YOLOv5 model on a custom dataset

Usage:
    $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640
"""

import argparse
import logging
import math
import os
import random
import sys
import time
from copy import deepcopy
from pathlib import Path

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, Adam, lr_scheduler
from tqdm import tqdm

FILE = Path(__file__).absolute()
sys.path.append(FILE.parents[0].as_posix())  # add yolov5/ to path

import val  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.callbacks import Callbacks
from utils.datasets import create_dataloader
from utils.downloads import attempt_download
from utils.general import (
    check_dataset,
    check_file,
    check_git_status,
    check_img_size,
    check_requirements,
    check_suffix,
    check_yaml,
    colorstr,
    get_latest_run,
    increment_path,
    init_seeds,
    labels_to_class_weights,
    labels_to_image_weights,
    methods,
    one_cycle,
    print_mutation,
    set_logging,
    strip_optimizer,
)
from utils.loggers import Loggers
from utils.loggers.wandb.wandb_utils import check_wandb_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve, plot_labels
from utils.torch_utils import (
    EarlyStopping,
    ModelEMA,
    de_parallel,
    intersect_dicts,
    select_device,
    torch_distributed_zero_first,
)

LOGGER = logging.getLogger(__name__)
LOCAL_RANK = int(
    os.getenv("LOCAL_RANK", -1)
)  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))


def train(hyp, opt, device, callbacks):  # path/to/hyp.yaml or hyp dictionary
    (
        save_dir,
        epochs,
        batch_size,
        weights,
        single_cls,
        evolve,
        data,
        cfg,
        resume,
        noval,
        nosave,
        workers,
        freeze,
    ) = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.weights,
        opt.single_cls,
        opt.evolve,
        opt.data,
        opt.cfg,
        opt.resume,
        opt.noval,
        opt.nosave,
        opt.workers,
        opt.freeze,
    )

    # Directories
    w = save_dir / "weights"  # weights dir
    w.mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / "last.pt", w / "best.pt"

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(
        colorstr("hyperparameters: ")
        + ", ".join(f"{k}={v}" for k, v in hyp.items())
    )

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.safe_dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        yaml.safe_dump(vars(opt), f, sort_keys=False)
    data_dict = None

    # Loggers
    if RANK in [-1, 0]:
        loggers = Loggers(
            save_dir, weights, opt, hyp, LOGGER
        )  # loggers instance
        if loggers.wandb:
            data_dict = loggers.wandb.data_dict
            if resume:
                weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

    # Config
    plots = not evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(1 + RANK)
    with torch_distributed_zero_first(RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict["train"], data_dict["val"]
    nc = 1 if single_cls else int(data_dict["nc"])  # number of classes
    names = (
        ["item"]
        if single_cls and len(data_dict["names"]) != 1
        else data_dict["names"]
    )  # class names
    assert (
        len(names) == nc
    ), f"{len(names)} names found for nc={nc} dataset in {data}"  # check
    is_coco = data.endswith("coco.yaml") and nc == 80  # COCO dataset

    # Model
    check_suffix(weights, ".pt")  # check weights
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(RANK):
            weights = attempt_download(
                weights
            )  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(
            cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")
        ).to(
            device
        )  # create
        exclude = (
            ["anchor"] if (cfg or hyp.get("anchors")) and not resume else []
        )  # exclude keys
        csd = (
            ckpt["model"].float().state_dict()
        )  # checkpoint state_dict as FP32
        csd = intersect_dicts(
            csd, model.state_dict(), exclude=exclude
        )  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(
            f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}"
        )  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(
            device
        )  # create

    # Freeze
    freeze = [f"model.{x}." for x in range(freeze)]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print(f"freezing {k}")
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(
        round(nbs / batch_size), 1
    )  # accumulate loss before optimizing
    hyp["weight_decay"] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
            g0.append(v.weight)
        elif hasattr(v, "weight") and isinstance(
            v.weight, nn.Parameter
        ):  # weight (with decay)
            g1.append(v.weight)

    if opt.adam:
        optimizer = Adam(
            g0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
        )  # adjust beta1 to momentum
    else:
        optimizer = SGD(
            g0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
        )

    optimizer.add_param_group(
        {"params": g1, "weight_decay": hyp["weight_decay"]}
    )  # add g1 with weight_decay
    optimizer.add_param_group({"params": g2})  # add g2 (biases)
    LOGGER.info(
        f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
        f"{len(g0)} weight, {len(g1)} weight (no decay), {len(g2)} bias"
    )
    del g0, g1, g2

    # Scheduler
    if opt.linear_lr:
        lf = (
            lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp["lrf"]) + hyp["lrf"]
        )  # linear
    else:
        lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(
        optimizer, lr_lambda=lf
    )  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # EMA
        if ema and ckpt.get("ema"):
            ema.ema.load_state_dict(ckpt["ema"].float().state_dict())
            ema.updates = ckpt["updates"]

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if resume:
            assert (
                start_epoch > 0
            ), f"{weights} training to {epochs} epochs is finished, nothing to resume."
        if epochs < start_epoch:
            LOGGER.info(
                f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
            )
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, csd

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[
        -1
    ].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz = check_img_size(
        opt.imgsz, gs, floor=gs * 2
    )  # verify imgsz is gs-multiple

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        logging.warning(
            "DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n"
            "See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started."
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info("Using SyncBatchNorm()")

    # Trainloader
    train_loader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size // WORLD_SIZE,
        gs,
        single_cls,
        hyp=hyp,
        augment=True,
        cache=opt.cache,
        rect=opt.rect,
        rank=RANK,
        workers=workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr("train: "),
    )
    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
    nb = len(train_loader)  # number of batches
    assert (
        mlc < nc
    ), f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}"

    # Process 0
    if RANK in [-1, 0]:
        val_loader = create_dataloader(
            val_path,
            imgsz,
            batch_size // WORLD_SIZE * 2,
            gs,
            single_cls,
            hyp=hyp,
            cache=None if noval else opt.cache,
            rect=True,
            rank=-1,
            workers=workers,
            pad=0.5,
            prefix=colorstr("val: "),
        )[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(
                    dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz
                )
            model.half().float()  # pre-reduce anchor precision

        callbacks.run("on_pretrain_routine_end")

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model parameters
    hyp["box"] *= 3.0 / nl  # scale to layers
    hyp["cls"] *= nc / 80.0 * 3.0 / nl  # scale to classes and layers
    hyp["obj"] *= (
        (imgsz / 640) ** 2 * 3.0 / nl
    )  # scale to image size and layers
    hyp["label_smoothing"] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = (
        labels_to_class_weights(dataset.labels, nc).to(device) * nc
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(
        round(hyp["warmup_epochs"] * nb), 1000
    )  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (
        0,
        0,
        0,
        0,
        0,
        0,
        0,
    )  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    stopper = EarlyStopping(patience=opt.patience)
    compute_loss = ComputeLoss(model)  # init loss class
    LOGGER.info(
        f"Image sizes {imgsz} train, {imgsz} val\n"
        f"Using {train_loader.num_workers} dataloader workers\n"
        f"Logging results to {colorstr('bold', save_dir)}\n"
        f"Starting training for {epochs} epochs..."
    )
    for epoch in range(
        start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = (
                model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
            )  # class weights
            iw = labels_to_image_weights(
                dataset.labels, nc=nc, class_weights=cw
            )  # image weights
            dataset.indices = random.choices(
                range(dataset.n), weights=iw, k=dataset.n
            )  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(
            ("\n" + "%10s" * 7)
            % ("Epoch", "gpu_mem", "box", "obj", "cls", "labels", "img_size")
        )
        if RANK in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
            imgs,
            targets,
            paths,
            _,
        ) in (
            pbar
        ):  # batch -------------------------------------------------------------
            ni = (
                i + nb * epoch
            )  # number integrated batches (since train start)
            imgs = (
                imgs.to(device, non_blocking=True).float() / 255.0
            )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / batch_size]).round()
                )
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
                        )

            # Multi-scale
            if opt.multi_scale:
                sz = (
                    random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs
                )  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                    ]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(
                        imgs, size=ns, mode="bilinear", align_corners=False
                    )

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device)
                )  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.0

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (
                    i + 1
                )  # update mean losses
                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)
                pbar.set_description(
                    ("%10s" * 2 + "%10.4g" * 5)
                    % (
                        f"{epoch}/{epochs - 1}",
                        mem,
                        *mloss,
                        targets.shape[0],
                        imgs.shape[-1],
                    )
                )
                callbacks.run(
                    "on_train_batch_end",
                    ni,
                    model,
                    imgs,
                    targets,
                    paths,
                    plots,
                    opt.sync_bn,
                )
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in [-1, 0]:
            # mAP
            callbacks.run("on_train_epoch_end", epoch=epoch)
            ema.update_attr(
                model,
                include=[
                    "yaml",
                    "nc",
                    "hyp",
                    "names",
                    "stride",
                    "class_weights",
                ],
            )
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = val.run(
                    data_dict,
                    batch_size=batch_size // WORLD_SIZE * 2,
                    imgsz=imgsz,
                    model=ema.ema,
                    single_cls=single_cls,
                    dataloader=val_loader,
                    save_dir=save_dir,
                    save_json=is_coco and final_epoch,
                    verbose=nc < 50 and final_epoch,
                    plots=plots and final_epoch,
                    callbacks=callbacks,
                    compute_loss=compute_loss,
                )

            # Update best mAP
            fi = fitness(
                np.array(results).reshape(1, -1)
            )  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run(
                "on_fit_epoch_end", log_vals, epoch, best_fitness, fi
            )

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    "epoch": epoch,
                    "best_fitness": best_fitness,
                    "model": deepcopy(de_parallel(model)).half(),
                    "ema": deepcopy(ema.ema).half(),
                    "updates": ema.updates,
                    "optimizer": optimizer.state_dict(),
                    "wandb_id": loggers.wandb.wandb_run.id
                    if loggers.wandb
                    else None,
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
                callbacks.run(
                    "on_model_save", last, epoch, final_epoch, best_fitness, fi
                )

            # Stop Single-GPU
            if RANK == -1 and stopper(epoch=epoch, fitness=fi):
                break

            # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
            # stop = stopper(epoch=epoch, fitness=fi)
            # if RANK == 0:
            #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks

        # Stop DPP
        # with torch_distributed_zero_first(RANK):
        # if stop:
        #    break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        LOGGER.info(
            f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours."
        )
        if not evolve:
            if is_coco:  # COCO dataset
                for m in (
                    [last, best] if best.exists() else [last]
                ):  # speed, mAP tests
                    results, _, _ = val.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(m, device).half(),
                        iou_thres=0.7,  # NMS IoU threshold for best pycocotools results
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=True,
                        plots=False,
                    )
            # Strip optimizers
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
        callbacks.run("on_train_end", last, best, plots, epoch)
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")

    torch.cuda.empty_cache()
    return results


def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--weights",
        type=str,
        default="yolov5s.pt",
        help="initial weights path",
    )
    parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
    parser.add_argument(
        "--data",
        type=str,
        default="data/coco128.yaml",
        help="dataset.yaml path",
    )
    parser.add_argument(
        "--hyp",
        type=str,
        default="data/hyps/hyp.scratch.yaml",
        help="hyperparameters path",
    )
    parser.add_argument("--epochs", type=int, default=300)
    parser.add_argument(
        "--batch-size",
        type=int,
        default=16,
        help="total batch size for all GPUs",
    )
    parser.add_argument(
        "--imgsz",
        "--img",
        "--img-size",
        type=int,
        default=640,
        help="train, val image size (pixels)",
    )
    parser.add_argument(
        "--rect", action="store_true", help="rectangular training"
    )
    parser.add_argument(
        "--resume",
        nargs="?",
        const=True,
        default=False,
        help="resume most recent training",
    )
    parser.add_argument(
        "--nosave", action="store_true", help="only save final checkpoint"
    )
    parser.add_argument(
        "--noval", action="store_true", help="only validate final epoch"
    )
    parser.add_argument(
        "--noautoanchor", action="store_true", help="disable autoanchor check"
    )
    parser.add_argument(
        "--evolve",
        type=int,
        nargs="?",
        const=300,
        help="evolve hyperparameters for x generations",
    )
    parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
    parser.add_argument(
        "--cache",
        type=str,
        nargs="?",
        const="ram",
        help='--cache images in "ram" (default) or "disk"',
    )
    parser.add_argument(
        "--image-weights",
        action="store_true",
        help="use weighted image selection for training",
    )
    parser.add_argument(
        "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
    )
    parser.add_argument(
        "--multi-scale", action="store_true", help="vary img-size +/- 50%%"
    )
    parser.add_argument(
        "--single-cls",
        action="store_true",
        help="train multi-class data as single-class",
    )
    parser.add_argument(
        "--adam", action="store_true", help="use torch.optim.Adam() optimizer"
    )
    parser.add_argument(
        "--sync-bn",
        action="store_true",
        help="use SyncBatchNorm, only available in DDP mode",
    )
    parser.add_argument(
        "--workers",
        type=int,
        default=8,
        help="maximum number of dataloader workers",
    )
    parser.add_argument(
        "--project", default="runs/train", help="save to project/name"
    )
    parser.add_argument("--entity", default=None, help="W&B entity")
    parser.add_argument("--name", default="exp", help="save to project/name")
    parser.add_argument(
        "--exist-ok",
        action="store_true",
        help="existing project/name ok, do not increment",
    )
    parser.add_argument("--quad", action="store_true", help="quad dataloader")
    parser.add_argument("--linear-lr", action="store_true", help="linear LR")
    parser.add_argument(
        "--label-smoothing",
        type=float,
        default=0.0,
        help="Label smoothing epsilon",
    )
    parser.add_argument(
        "--upload_dataset",
        action="store_true",
        help="Upload dataset as W&B artifact table",
    )
    parser.add_argument(
        "--bbox_interval",
        type=int,
        default=-1,
        help="Set bounding-box image logging interval for W&B",
    )
    parser.add_argument(
        "--save_period",
        type=int,
        default=-1,
        help='Log model after every "save_period" epoch',
    )
    parser.add_argument(
        "--artifact_alias",
        type=str,
        default="latest",
        help="version of dataset artifact to be used",
    )
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="DDP parameter, do not modify",
    )
    parser.add_argument(
        "--freeze",
        type=int,
        default=0,
        help="Number of layers to freeze. backbone=10, all=24",
    )
    parser.add_argument(
        "--patience",
        type=int,
        default=100,
        help="EarlyStopping patience (epochs without improvement)",
    )
    opt = parser.parse_known_args()[0] if known else parser.parse_args()
    return opt


def main(opt, callbacks=Callbacks()):
    # Checks
    set_logging(RANK)
    if RANK in [-1, 0]:
        print(
            colorstr("train: ")
            + ", ".join(f"{k}={v}" for k, v in vars(opt).items())
        )
        check_git_status()
        check_requirements(
            requirements=FILE.parent / "requirements.txt", exclude=["thop"]
        )

    # Resume
    if (
        opt.resume and not check_wandb_resume(opt) and not opt.evolve
    ):  # resume an interrupted run
        ckpt = (
            opt.resume if isinstance(opt.resume, str) else get_latest_run()
        )  # specified or most recent path
        assert os.path.isfile(
            ckpt
        ), "ERROR: --resume checkpoint does not exist"
        with open(Path(ckpt).parent.parent / "opt.yaml") as f:
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = "", ckpt, True  # reinstate
        LOGGER.info(f"Resuming training from {ckpt}")
    else:
        opt.data, opt.cfg, opt.hyp = (
            check_file(opt.data),
            check_yaml(opt.cfg),
            check_yaml(opt.hyp),
        )  # check YAMLs
        assert len(opt.cfg) or len(
            opt.weights
        ), "either --cfg or --weights must be specified"
        if opt.evolve:
            opt.project = "runs/evolve"
            opt.exist_ok = opt.resume
        opt.save_dir = str(
            increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
        )

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        from datetime import timedelta

        assert (
            torch.cuda.device_count() > LOCAL_RANK
        ), "insufficient CUDA devices for DDP command"
        assert (
            opt.batch_size % WORLD_SIZE == 0
        ), "--batch-size must be multiple of CUDA device count"
        assert (
            not opt.image_weights
        ), "--image-weights argument is not compatible with DDP training"
        assert (
            not opt.evolve
        ), "--evolve argument is not compatible with DDP training"
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device("cuda", LOCAL_RANK)
        dist.init_process_group(
            backend="nccl" if dist.is_nccl_available() else "gloo"
        )

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)
        if WORLD_SIZE > 1 and RANK == 0:
            _ = [
                print("Destroying process group... ", end=""),
                dist.destroy_process_group(),
                print("Done."),
            ]

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            "lr0": (
                1,
                1e-5,
                1e-1,
            ),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            "lrf": (
                1,
                0.01,
                1.0,
            ),  # final OneCycleLR learning rate (lr0 * lrf)
            "momentum": (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            "weight_decay": (1, 0.0, 0.001),  # optimizer weight decay
            "warmup_epochs": (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            "warmup_momentum": (1, 0.0, 0.95),  # warmup initial momentum
            "warmup_bias_lr": (1, 0.0, 0.2),  # warmup initial bias lr
            "box": (1, 0.02, 0.2),  # box loss gain
            "cls": (1, 0.2, 4.0),  # cls loss gain
            "cls_pw": (1, 0.5, 2.0),  # cls BCELoss positive_weight
            "obj": (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            "obj_pw": (1, 0.5, 2.0),  # obj BCELoss positive_weight
            "iou_t": (0, 0.1, 0.7),  # IoU training threshold
            "anchor_t": (1, 2.0, 8.0),  # anchor-multiple threshold
            "anchors": (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            "fl_gamma": (
                0,
                0.0,
                2.0,
            ),  # focal loss gamma (efficientDet default gamma=1.5)
            "hsv_h": (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            "hsv_s": (
                1,
                0.0,
                0.9,
            ),  # image HSV-Saturation augmentation (fraction)
            "hsv_v": (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            "degrees": (1, 0.0, 45.0),  # image rotation (+/- deg)
            "translate": (1, 0.0, 0.9),  # image translation (+/- fraction)
            "scale": (1, 0.0, 0.9),  # image scale (+/- gain)
            "shear": (1, 0.0, 10.0),  # image shear (+/- deg)
            "perspective": (
                0,
                0.0,
                0.001,
            ),  # image perspective (+/- fraction), range 0-0.001
            "flipud": (1, 0.0, 1.0),  # image flip up-down (probability)
            "fliplr": (0, 0.0, 1.0),  # image flip left-right (probability)
            "mosaic": (1, 0.0, 1.0),  # image mixup (probability)
            "mixup": (1, 0.0, 1.0),  # image mixup (probability)
            "copy_paste": (1, 0.0, 1.0),
        }  # segment copy-paste (probability)

        with open(opt.hyp) as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if "anchors" not in hyp:  # anchors commented in hyp.yaml
                hyp["anchors"] = 3
        opt.noval, opt.nosave, save_dir = (
            True,
            True,
            Path(opt.save_dir),
        )  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        evolve_yaml, evolve_csv = (
            save_dir / "hyp_evolve.yaml",
            save_dir / "evolve.csv",
        )
        if opt.bucket:
            os.system(
                f"gsutil cp gs://{opt.bucket}/evolve.csv {save_dir}"
            )  # download evolve.csv if exists

        for _ in range(opt.evolve):  # generations to evolve
            if (
                evolve_csv.exists()
            ):  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                parent = (
                    "single"  # parent selection method: 'single' or 'weighted'
                )
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1e-6  # weights (sum > 0)
                if parent == "single" or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[
                        random.choices(range(n), weights=w)[0]
                    ]  # weighted selection
                elif parent == "weighted":
                    x = (x * w.reshape(n, 1)).sum(
                        0
                    ) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(
                    v == 1
                ):  # mutate until a change occurs (prevent duplicates)
                    v = (
                        g
                        * (npr.random(ng) < mp)
                        * npr.randn(ng)
                        * npr.random()
                        * s
                        + 1
                    ).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, callbacks)

            # Write mutation results
            print_mutation(results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        plot_evolve(evolve_csv)
        print(
            f"Hyperparameter evolution finished\n"
            f"Results saved to {colorstr('bold', save_dir)}\n"
            f"Use best hyperparameters example: $ python train.py --hyp {evolve_yaml}"
        )


def run(**kwargs):
    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)