Spaces:
Runtime error
Runtime error
File size: 47,283 Bytes
5b2fcab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Common modules
"""
import ast
import contextlib
import json
import math
import platform
import warnings
import zipfile
from collections import OrderedDict, namedtuple
from copy import copy
from pathlib import Path
from urllib.parse import urlparse
import cv2
import numpy as np
import pandas as pd
import requests
import torch
import torch.nn as nn
from IPython.display import display
from PIL import Image
from torch.cuda import amp
from utils import TryExcept
from utils.dataloaders import exif_transpose, letterbox
from utils.general import (
LOGGER,
ROOT,
Profile,
check_requirements,
check_suffix,
check_version,
colorstr,
increment_path,
is_notebook,
make_divisible,
non_max_suppression,
scale_boxes,
xywh2xyxy,
xyxy2xywh,
yaml_load,
)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, smart_inference_mode
def autopad(k, p=None, d=1): # kernel, padding, dilation
# Pad to 'same' shape outputs
if d > 1:
k = (
d * (k - 1) + 1
if isinstance(k, int)
else [d * (x - 1) + 1 for x in k]
) # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
super().__init__()
self.conv = nn.Conv2d(
c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False
)
self.bn = nn.BatchNorm2d(c2)
self.act = (
self.default_act
if act is True
else act
if isinstance(act, nn.Module)
else nn.Identity()
)
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
return self.act(self.conv(x))
class DWConv(Conv):
# Depth-wise convolution
def __init__(
self, c1, c2, k=1, s=1, d=1, act=True
): # ch_in, ch_out, kernel, stride, dilation, activation
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
class DWConvTranspose2d(nn.ConvTranspose2d):
# Depth-wise transpose convolution
def __init__(
self, c1, c2, k=1, s=1, p1=0, p2=0
): # ch_in, ch_out, kernel, stride, padding, padding_out
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
class TransformerLayer(nn.Module):
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
def __init__(self, c, num_heads):
super().__init__()
self.q = nn.Linear(c, c, bias=False)
self.k = nn.Linear(c, c, bias=False)
self.v = nn.Linear(c, c, bias=False)
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
self.fc1 = nn.Linear(c, c, bias=False)
self.fc2 = nn.Linear(c, c, bias=False)
def forward(self, x):
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
x = self.fc2(self.fc1(x)) + x
return x
class TransformerBlock(nn.Module):
# Vision Transformer https://arxiv.org/abs/2010.11929
def __init__(self, c1, c2, num_heads, num_layers):
super().__init__()
self.conv = None
if c1 != c2:
self.conv = Conv(c1, c2)
self.linear = nn.Linear(c2, c2) # learnable position embedding
self.tr = nn.Sequential(
*(TransformerLayer(c2, num_heads) for _ in range(num_layers))
)
self.c2 = c2
def forward(self, x):
if self.conv is not None:
x = self.conv(x)
b, _, w, h = x.shape
p = x.flatten(2).permute(2, 0, 1)
return (
self.tr(p + self.linear(p))
.permute(1, 2, 0)
.reshape(b, self.c2, w, h)
)
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(
self, c1, c2, shortcut=True, g=1, e=0.5
): # ch_in, ch_out, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class BottleneckCSP(nn.Module):
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(
self, c1, c2, n=1, shortcut=True, g=1, e=0.5
): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
self.cv4 = Conv(2 * c_, c2, 1, 1)
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
self.act = nn.SiLU()
self.m = nn.Sequential(
*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))
)
def forward(self, x):
y1 = self.cv3(self.m(self.cv1(x)))
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
class CrossConv(nn.Module):
# Cross Convolution Downsample
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, (1, k), (1, s))
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(
self, c1, c2, n=1, shortcut=True, g=1, e=0.5
): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
self.m = nn.Sequential(
*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))
)
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
class C3x(C3):
# C3 module with cross-convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = nn.Sequential(
*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))
)
class C3TR(C3):
# C3 module with TransformerBlock()
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = TransformerBlock(c_, c_, 4, n)
class C3SPP(C3):
# C3 module with SPP()
def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e)
self.m = SPP(c_, c_, k)
class C3Ghost(C3):
# C3 module with GhostBottleneck()
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__(c1, c2, n, shortcut, g, e)
c_ = int(c2 * e) # hidden channels
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
class SPP(nn.Module):
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
def __init__(self, c1, c2, k=(5, 9, 13)):
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
self.m = nn.ModuleList(
[nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]
)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter(
"ignore"
) # suppress torch 1.9.0 max_pool2d() warning
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
class SPPF(nn.Module):
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
super().__init__()
c_ = c1 // 2 # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_ * 4, c2, 1, 1)
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
def forward(self, x):
x = self.cv1(x)
with warnings.catch_warnings():
warnings.simplefilter(
"ignore"
) # suppress torch 1.9.0 max_pool2d() warning
y1 = self.m(x)
y2 = self.m(y1)
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
class Focus(nn.Module):
# Focus wh information into c-space
def __init__(
self, c1, c2, k=1, s=1, p=None, g=1, act=True
): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
# self.contract = Contract(gain=2)
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
return self.conv(
torch.cat(
(
x[..., ::2, ::2],
x[..., 1::2, ::2],
x[..., ::2, 1::2],
x[..., 1::2, 1::2],
),
1,
)
)
# return self.conv(self.contract(x))
class GhostConv(nn.Module):
# Ghost Convolution https://github.com/huawei-noah/ghostnet
def __init__(
self, c1, c2, k=1, s=1, g=1, act=True
): # ch_in, ch_out, kernel, stride, groups
super().__init__()
c_ = c2 // 2 # hidden channels
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
def forward(self, x):
y = self.cv1(x)
return torch.cat((y, self.cv2(y)), 1)
class GhostBottleneck(nn.Module):
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
super().__init__()
c_ = c2 // 2
self.conv = nn.Sequential(
GhostConv(c1, c_, 1, 1), # pw
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
GhostConv(c_, c2, 1, 1, act=False),
) # pw-linear
self.shortcut = (
nn.Sequential(
DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)
)
if s == 2
else nn.Identity()
)
def forward(self, x):
return self.conv(x) + self.shortcut(x)
class Contract(nn.Module):
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
(
b,
c,
h,
w,
) = (
x.size()
) # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
s = self.gain
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
class Expand(nn.Module):
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
def __init__(self, gain=2):
super().__init__()
self.gain = gain
def forward(self, x):
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
s = self.gain
x = x.view(b, s, s, c // s**2, h, w) # x(1,2,2,16,80,80)
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
return x.view(b, c // s**2, h * s, w * s) # x(1,16,160,160)
class Concat(nn.Module):
# Concatenate a list of tensors along dimension
def __init__(self, dimension=1):
super().__init__()
self.d = dimension
def forward(self, x):
return torch.cat(x, self.d)
class DetectMultiBackend(nn.Module):
# YOLOv5 MultiBackend class for python inference on various backends
def __init__(
self,
weights="yolov5s.pt",
device=torch.device("cpu"),
dnn=False,
data=None,
fp16=False,
fuse=True,
):
# Usage:
# PyTorch: weights = *.pt
# TorchScript: *.torchscript
# ONNX Runtime: *.onnx
# ONNX OpenCV DNN: *.onnx --dnn
# OpenVINO: *_openvino_model
# CoreML: *.mlmodel
# TensorRT: *.engine
# TensorFlow SavedModel: *_saved_model
# TensorFlow GraphDef: *.pb
# TensorFlow Lite: *.tflite
# TensorFlow Edge TPU: *_edgetpu.tflite
# PaddlePaddle: *_paddle_model
from models.experimental import ( # scoped to avoid circular import
attempt_download,
attempt_load,
)
super().__init__()
w = str(weights[0] if isinstance(weights, list) else weights)
(
pt,
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
triton,
) = self._model_type(w)
fp16 &= pt or jit or onnx or engine # FP16
nhwc = (
coreml or saved_model or pb or tflite or edgetpu
) # BHWC formats (vs torch BCWH)
stride = 32 # default stride
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
if not (pt or triton):
w = attempt_download(w) # download if not local
if pt: # PyTorch
model = attempt_load(
weights if isinstance(weights, list) else w,
device=device,
inplace=True,
fuse=fuse,
)
stride = max(int(model.stride.max()), 32) # model stride
names = (
model.module.names if hasattr(model, "module") else model.names
) # get class names
model.half() if fp16 else model.float()
self.model = (
model # explicitly assign for to(), cpu(), cuda(), half()
)
elif jit: # TorchScript
LOGGER.info(f"Loading {w} for TorchScript inference...")
extra_files = {"config.txt": ""} # model metadata
model = torch.jit.load(
w, _extra_files=extra_files, map_location=device
)
model.half() if fp16 else model.float()
if extra_files["config.txt"]: # load metadata dict
d = json.loads(
extra_files["config.txt"],
object_hook=lambda d: {
int(k) if k.isdigit() else k: v for k, v in d.items()
},
)
stride, names = int(d["stride"]), d["names"]
elif dnn: # ONNX OpenCV DNN
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
check_requirements("opencv-python>=4.5.4")
net = cv2.dnn.readNetFromONNX(w)
elif onnx: # ONNX Runtime
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
check_requirements(
("onnx", "onnxruntime-gpu" if cuda else "onnxruntime")
)
import onnxruntime
providers = (
["CUDAExecutionProvider", "CPUExecutionProvider"]
if cuda
else ["CPUExecutionProvider"]
)
session = onnxruntime.InferenceSession(w, providers=providers)
output_names = [x.name for x in session.get_outputs()]
meta = session.get_modelmeta().custom_metadata_map # metadata
if "stride" in meta:
stride, names = int(meta["stride"]), eval(meta["names"])
elif xml: # OpenVINO
LOGGER.info(f"Loading {w} for OpenVINO inference...")
check_requirements(
"openvino"
) # requires openvino-dev: https://pypi.org/project/openvino-dev/
from openvino.runtime import Core, Layout, get_batch
ie = Core()
if not Path(w).is_file(): # if not *.xml
w = next(
Path(w).glob("*.xml")
) # get *.xml file from *_openvino_model dir
network = ie.read_model(
model=w, weights=Path(w).with_suffix(".bin")
)
if network.get_parameters()[0].get_layout().empty:
network.get_parameters()[0].set_layout(Layout("NCHW"))
batch_dim = get_batch(network)
if batch_dim.is_static:
batch_size = batch_dim.get_length()
executable_network = ie.compile_model(
network, device_name="CPU"
) # device_name="MYRIAD" for Intel NCS2
stride, names = self._load_metadata(
Path(w).with_suffix(".yaml")
) # load metadata
elif engine: # TensorRT
LOGGER.info(f"Loading {w} for TensorRT inference...")
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
check_version(
trt.__version__, "7.0.0", hard=True
) # require tensorrt>=7.0.0
if device.type == "cpu":
device = torch.device("cuda:0")
Binding = namedtuple(
"Binding", ("name", "dtype", "shape", "data", "ptr")
)
logger = trt.Logger(trt.Logger.INFO)
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
model = runtime.deserialize_cuda_engine(f.read())
context = model.create_execution_context()
bindings = OrderedDict()
output_names = []
fp16 = False # default updated below
dynamic = False
for i in range(model.num_bindings):
name = model.get_binding_name(i)
dtype = trt.nptype(model.get_binding_dtype(i))
if model.binding_is_input(i):
if -1 in tuple(model.get_binding_shape(i)): # dynamic
dynamic = True
context.set_binding_shape(
i, tuple(model.get_profile_shape(0, i)[2])
)
if dtype == np.float16:
fp16 = True
else: # output
output_names.append(name)
shape = tuple(context.get_binding_shape(i))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
bindings[name] = Binding(
name, dtype, shape, im, int(im.data_ptr())
)
binding_addrs = OrderedDict(
(n, d.ptr) for n, d in bindings.items()
)
batch_size = bindings["images"].shape[
0
] # if dynamic, this is instead max batch size
elif coreml: # CoreML
LOGGER.info(f"Loading {w} for CoreML inference...")
import coremltools as ct
model = ct.models.MLModel(w)
elif saved_model: # TF SavedModel
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
import tensorflow as tf
keras = False # assume TF1 saved_model
model = (
tf.keras.models.load_model(w)
if keras
else tf.saved_model.load(w)
)
elif (
pb
): # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
import tensorflow as tf
def wrap_frozen_graph(gd, inputs, outputs):
x = tf.compat.v1.wrap_function(
lambda: tf.compat.v1.import_graph_def(gd, name=""), []
) # wrapped
ge = x.graph.as_graph_element
return x.prune(
tf.nest.map_structure(ge, inputs),
tf.nest.map_structure(ge, outputs),
)
def gd_outputs(gd):
name_list, input_list = [], []
for (
node
) in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
name_list.append(node.name)
input_list.extend(node.input)
return sorted(
f"{x}:0"
for x in list(set(name_list) - set(input_list))
if not x.startswith("NoOp")
)
gd = tf.Graph().as_graph_def() # TF GraphDef
with open(w, "rb") as f:
gd.ParseFromString(f.read())
frozen_func = wrap_frozen_graph(
gd, inputs="x:0", outputs=gd_outputs(gd)
)
elif (
tflite or edgetpu
): # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
from tflite_runtime.interpreter import Interpreter, load_delegate
except ImportError:
import tensorflow as tf
Interpreter, load_delegate = (
tf.lite.Interpreter,
tf.lite.experimental.load_delegate,
)
if (
edgetpu
): # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
LOGGER.info(
f"Loading {w} for TensorFlow Lite Edge TPU inference..."
)
delegate = {
"Linux": "libedgetpu.so.1",
"Darwin": "libedgetpu.1.dylib",
"Windows": "edgetpu.dll",
}[platform.system()]
interpreter = Interpreter(
model_path=w,
experimental_delegates=[load_delegate(delegate)],
)
else: # TFLite
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
interpreter = Interpreter(model_path=w) # load TFLite model
interpreter.allocate_tensors() # allocate
input_details = interpreter.get_input_details() # inputs
output_details = interpreter.get_output_details() # outputs
# load metadata
with contextlib.suppress(zipfile.BadZipFile):
with zipfile.ZipFile(w, "r") as model:
meta_file = model.namelist()[0]
meta = ast.literal_eval(
model.read(meta_file).decode("utf-8")
)
stride, names = int(meta["stride"]), meta["names"]
elif tfjs: # TF.js
raise NotImplementedError(
"ERROR: YOLOv5 TF.js inference is not supported"
)
elif paddle: # PaddlePaddle
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
import paddle.inference as pdi
if not Path(w).is_file(): # if not *.pdmodel
w = next(
Path(w).rglob("*.pdmodel")
) # get *.pdmodel file from *_paddle_model dir
weights = Path(w).with_suffix(".pdiparams")
config = pdi.Config(str(w), str(weights))
if cuda:
config.enable_use_gpu(
memory_pool_init_size_mb=2048, device_id=0
)
predictor = pdi.create_predictor(config)
input_handle = predictor.get_input_handle(
predictor.get_input_names()[0]
)
output_names = predictor.get_output_names()
elif triton: # NVIDIA Triton Inference Server
LOGGER.info(f"Using {w} as Triton Inference Server...")
check_requirements("tritonclient[all]")
from utils.triton import TritonRemoteModel
model = TritonRemoteModel(url=w)
nhwc = model.runtime.startswith("tensorflow")
else:
raise NotImplementedError(f"ERROR: {w} is not a supported format")
# class names
if "names" not in locals():
names = (
yaml_load(data)["names"]
if data
else {i: f"class{i}" for i in range(999)}
)
if names[0] == "n01440764" and len(names) == 1000: # ImageNet
names = yaml_load(ROOT / "data/ImageNet.yaml")[
"names"
] # human-readable names
self.__dict__.update(locals()) # assign all variables to self
def forward(self, im, augment=False, visualize=False):
# YOLOv5 MultiBackend inference
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(
0, 2, 3, 1
) # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pt: # PyTorch
y = (
self.model(im, augment=augment, visualize=visualize)
if augment or visualize
else self.model(im)
)
elif self.jit: # TorchScript
y = self.model(im)
elif self.dnn: # ONNX OpenCV DNN
im = im.cpu().numpy() # torch to numpy
self.net.setInput(im)
y = self.net.forward()
elif self.onnx: # ONNX Runtime
im = im.cpu().numpy() # torch to numpy
y = self.session.run(
self.output_names, {self.session.get_inputs()[0].name: im}
)
elif self.xml: # OpenVINO
im = im.cpu().numpy() # FP32
y = list(self.executable_network([im]).values())
elif self.engine: # TensorRT
if self.dynamic and im.shape != self.bindings["images"].shape:
i = self.model.get_binding_index("images")
self.context.set_binding_shape(
i, im.shape
) # reshape if dynamic
self.bindings["images"] = self.bindings["images"]._replace(
shape=im.shape
)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(
tuple(self.context.get_binding_shape(i))
)
s = self.bindings["images"].shape
assert (
im.shape == s
), f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs["images"] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im.cpu().numpy()
im = Image.fromarray((im[0] * 255).astype("uint8"))
# im = im.resize((192, 320), Image.ANTIALIAS)
y = self.model.predict(
{"image": im}
) # coordinates are xywh normalized
if "confidence" in y:
box = xywh2xyxy(
y["coordinates"] * [[w, h, w, h]]
) # xyxy pixels
conf, cls = y["confidence"].max(1), y["confidence"].argmax(
1
).astype(np.float)
y = np.concatenate(
(box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1
)
else:
y = list(
reversed(y.values())
) # reversed for segmentation models (pred, proto)
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [
self.predictor.get_output_handle(x).copy_to_cpu()
for x in self.output_names
]
elif self.triton: # NVIDIA Triton Inference Server
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = (
self.model(im, training=False)
if self.keras
else self.model(im)
)
elif self.pb: # GraphDef
y = self.frozen_func(x=self.tf.constant(im))
else: # Lite or Edge TPU
input = self.input_details[0]
int8 = (
input["dtype"] == np.uint8
) # is TFLite quantized uint8 model
if int8:
scale, zero_point = input["quantization"]
im = (im / scale + zero_point).astype(np.uint8) # de-scale
self.interpreter.set_tensor(input["index"], im)
self.interpreter.invoke()
y = []
for output in self.output_details:
x = self.interpreter.get_tensor(output["index"])
if int8:
scale, zero_point = output["quantization"]
x = (
x.astype(np.float32) - zero_point
) * scale # re-scale
y.append(x)
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
if isinstance(y, (list, tuple)):
return (
self.from_numpy(y[0])
if len(y) == 1
else [self.from_numpy(x) for x in y]
)
else:
return self.from_numpy(y)
def from_numpy(self, x):
return (
torch.from_numpy(x).to(self.device)
if isinstance(x, np.ndarray)
else x
)
def warmup(self, imgsz=(1, 3, 640, 640)):
# Warmup model by running inference once
warmup_types = (
self.pt,
self.jit,
self.onnx,
self.engine,
self.saved_model,
self.pb,
self.triton,
)
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
im = torch.empty(
*imgsz,
dtype=torch.half if self.fp16 else torch.float,
device=self.device,
) # input
for _ in range(2 if self.jit else 1): #
self.forward(im) # warmup
@staticmethod
def _model_type(p="path/to/model.pt"):
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
from export import export_formats
from utils.downloads import is_url
sf = list(export_formats().Suffix) # export suffixes
if not is_url(p, check=False):
check_suffix(p, sf) # checks
url = urlparse(p) # if url may be Triton inference server
types = [s in Path(p).name for s in sf]
types[8] &= not types[9] # tflite &= not edgetpu
triton = not any(types) and all(
[any(s in url.scheme for s in ["http", "grpc"]), url.netloc]
)
return types + [triton]
@staticmethod
def _load_metadata(f=Path("path/to/meta.yaml")):
# Load metadata from meta.yaml if it exists
if f.exists():
d = yaml_load(f)
return d["stride"], d["names"] # assign stride, names
return None, None
class AutoShape(nn.Module):
# YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
conf = 0.25 # NMS confidence threshold
iou = 0.45 # NMS IoU threshold
agnostic = False # NMS class-agnostic
multi_label = False # NMS multiple labels per box
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
max_det = 1000 # maximum number of detections per image
amp = False # Automatic Mixed Precision (AMP) inference
def __init__(self, model, verbose=True):
super().__init__()
if verbose:
LOGGER.info("Adding AutoShape... ")
copy_attr(
self,
model,
include=("yaml", "nc", "hyp", "names", "stride", "abc"),
exclude=(),
) # copy attributes
self.dmb = isinstance(
model, DetectMultiBackend
) # DetectMultiBackend() instance
self.pt = not self.dmb or model.pt # PyTorch model
self.model = model.eval()
if self.pt:
m = (
self.model.model.model[-1]
if self.dmb
else self.model.model[-1]
) # Detect()
m.inplace = (
False # Detect.inplace=False for safe multithread inference
)
m.export = True # do not output loss values
def _apply(self, fn):
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
self = super()._apply(fn)
if self.pt:
m = (
self.model.model.model[-1]
if self.dmb
else self.model.model[-1]
) # Detect()
m.stride = fn(m.stride)
m.grid = list(map(fn, m.grid))
if isinstance(m.anchor_grid, list):
m.anchor_grid = list(map(fn, m.anchor_grid))
return self
@smart_inference_mode()
def forward(self, ims, size=640, augment=False, profile=False):
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
# URI: = 'https://ultralytics.com/images/zidane.jpg'
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
# numpy: = np.zeros((640,1280,3)) # HWC
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
dt = (Profile(), Profile(), Profile())
with dt[0]:
if isinstance(size, int): # expand
size = (size, size)
p = (
next(self.model.parameters())
if self.pt
else torch.empty(1, device=self.model.device)
) # param
autocast = self.amp and (
p.device.type != "cpu"
) # Automatic Mixed Precision (AMP) inference
if isinstance(ims, torch.Tensor): # torch
with amp.autocast(autocast):
return self.model(
ims.to(p.device).type_as(p), augment=augment
) # inference
# Pre-process
n, ims = (
(len(ims), list(ims))
if isinstance(ims, (list, tuple))
else (1, [ims])
) # number, list of images
shape0, shape1, files = (
[],
[],
[],
) # image and inference shapes, filenames
for i, im in enumerate(ims):
f = f"image{i}" # filename
if isinstance(im, (str, Path)): # filename or uri
im, f = (
Image.open(
requests.get(im, stream=True).raw
if str(im).startswith("http")
else im
),
im,
)
im = np.asarray(exif_transpose(im))
elif isinstance(im, Image.Image): # PIL Image
im, f = (
np.asarray(exif_transpose(im)),
getattr(im, "filename", f) or f,
)
files.append(Path(f).with_suffix(".jpg").name)
if im.shape[0] < 5: # image in CHW
im = im.transpose(
(1, 2, 0)
) # reverse dataloader .transpose(2, 0, 1)
im = (
im[..., :3]
if im.ndim == 3
else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
) # enforce 3ch input
s = im.shape[:2] # HWC
shape0.append(s) # image shape
g = max(size) / max(s) # gain
shape1.append([int(y * g) for y in s])
ims[i] = (
im if im.data.contiguous else np.ascontiguousarray(im)
) # update
shape1 = [
make_divisible(x, self.stride) for x in np.array(shape1).max(0)
] # inf shape
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
x = np.ascontiguousarray(
np.array(x).transpose((0, 3, 1, 2))
) # stack and BHWC to BCHW
x = (
torch.from_numpy(x).to(p.device).type_as(p) / 255
) # uint8 to fp16/32
with amp.autocast(autocast):
# Inference
with dt[1]:
y = self.model(x, augment=augment) # forward
# Post-process
with dt[2]:
y = non_max_suppression(
y if self.dmb else y[0],
self.conf,
self.iou,
self.classes,
self.agnostic,
self.multi_label,
max_det=self.max_det,
) # NMS
for i in range(n):
scale_boxes(shape1, y[i][:, :4], shape0[i])
return Detections(ims, y, files, dt, self.names, x.shape)
class Detections:
# YOLOv5 detections class for inference results
def __init__(
self, ims, pred, files, times=(0, 0, 0), names=None, shape=None
):
super().__init__()
d = pred[0].device # device
gn = [
torch.tensor(
[*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d
)
for im in ims
] # normalizations
self.ims = ims # list of images as numpy arrays
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
self.names = names # class names
self.files = files # image filenames
self.times = times # profiling times
self.xyxy = pred # xyxy pixels
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
self.n = len(self.pred) # number of images (batch size)
self.t = tuple(x.t / self.n * 1e3 for x in times) # timestamps (ms)
self.s = tuple(shape) # inference BCHW shape
def _run(
self,
pprint=False,
show=False,
save=False,
crop=False,
render=False,
labels=True,
save_dir=Path(""),
):
s, crops = "", []
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
s += f"\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} " # string
if pred.shape[0]:
for c in pred[:, -1].unique():
n = (pred[:, -1] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
s = s.rstrip(", ")
if show or save or render or crop:
annotator = Annotator(im, example=str(self.names))
for *box, conf, cls in reversed(
pred
): # xyxy, confidence, class
label = f"{self.names[int(cls)]} {conf:.2f}"
if crop:
file = (
save_dir
/ "crops"
/ self.names[int(cls)]
/ self.files[i]
if save
else None
)
crops.append(
{
"box": box,
"conf": conf,
"cls": cls,
"label": label,
"im": save_one_box(
box, im, file=file, save=save
),
}
)
else: # all others
annotator.box_label(
box, label if labels else "", color=colors(cls)
)
im = annotator.im
else:
s += "(no detections)"
im = (
Image.fromarray(im.astype(np.uint8))
if isinstance(im, np.ndarray)
else im
) # from np
if show:
display(im) if is_notebook() else im.show(self.files[i])
if save:
f = self.files[i]
im.save(save_dir / f) # save
if i == self.n - 1:
LOGGER.info(
f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}"
)
if render:
self.ims[i] = np.asarray(im)
if pprint:
s = s.lstrip("\n")
return (
f"{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}"
% self.t
)
if crop:
if save:
LOGGER.info(f"Saved results to {save_dir}\n")
return crops
@TryExcept("Showing images is not supported in this environment")
def show(self, labels=True):
self._run(show=True, labels=labels) # show results
def save(self, labels=True, save_dir="runs/detect/exp", exist_ok=False):
save_dir = increment_path(
save_dir, exist_ok, mkdir=True
) # increment save_dir
self._run(save=True, labels=labels, save_dir=save_dir) # save results
def crop(self, save=True, save_dir="runs/detect/exp", exist_ok=False):
save_dir = (
increment_path(save_dir, exist_ok, mkdir=True) if save else None
)
return self._run(
crop=True, save=save, save_dir=save_dir
) # crop results
def render(self, labels=True):
self._run(render=True, labels=labels) # render results
return self.ims
def pandas(self):
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
new = copy(self) # return copy
ca = (
"xmin",
"ymin",
"xmax",
"ymax",
"confidence",
"class",
"name",
) # xyxy columns
cb = (
"xcenter",
"ycenter",
"width",
"height",
"confidence",
"class",
"name",
) # xywh columns
for k, c in zip(["xyxy", "xyxyn", "xywh", "xywhn"], [ca, ca, cb, cb]):
a = [
[
x[:5] + [int(x[5]), self.names[int(x[5])]]
for x in x.tolist()
]
for x in getattr(self, k)
] # update
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
return new
def tolist(self):
# return a list of Detections objects, i.e. 'for result in results.tolist():'
r = range(self.n) # iterable
x = [
Detections(
[self.ims[i]],
[self.pred[i]],
[self.files[i]],
self.times,
self.names,
self.s,
)
for i in r
]
# for d in x:
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
# setattr(d, k, getattr(d, k)[0]) # pop out of list
return x
def print(self):
LOGGER.info(self.__str__())
def __len__(self): # override len(results)
return self.n
def __str__(self): # override print(results)
return self._run(pprint=True) # print results
def __repr__(self):
return f"YOLOv5 {self.__class__} instance\n" + self.__str__()
class Proto(nn.Module):
# YOLOv5 mask Proto module for segmentation models
def __init__(
self, c1, c_=256, c2=32
): # ch_in, number of protos, number of masks
super().__init__()
self.cv1 = Conv(c1, c_, k=3)
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
self.cv2 = Conv(c_, c_, k=3)
self.cv3 = Conv(c_, c2)
def forward(self, x):
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
class Classify(nn.Module):
# YOLOv5 classification head, i.e. x(b,c1,20,20) to x(b,c2)
def __init__(
self, c1, c2, k=1, s=1, p=None, g=1
): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
c_ = 1280 # efficientnet_b0 size
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
self.drop = nn.Dropout(p=0.0, inplace=True)
self.linear = nn.Linear(c_, c2) # to x(b,c2)
def forward(self, x):
if isinstance(x, list):
x = torch.cat(x, 1)
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|