File size: 12,792 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
    $ python classify/predict.py --weights yolov5s-cls.pt --source 0                               # webcam
                                                                   img.jpg                         # image
                                                                   vid.mp4                         # video
                                                                   screen                          # screenshot
                                                                   path/                           # directory
                                                                   list.txt                        # list of images
                                                                   list.streams                    # list of streams
                                                                   'path/*.jpg'                    # glob
                                                                   'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                                                                   'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python classify/predict.py --weights yolov5s-cls.pt                 # PyTorch
                                           yolov5s-cls.torchscript        # TorchScript
                                           yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                           yolov5s-cls_openvino_model     # OpenVINO
                                           yolov5s-cls.engine             # TensorRT
                                           yolov5s-cls.mlmodel            # CoreML (macOS-only)
                                           yolov5s-cls_saved_model        # TensorFlow SavedModel
                                           yolov5s-cls.pb                 # TensorFlow GraphDef
                                           yolov5s-cls.tflite             # TensorFlow Lite
                                           yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU
                                           yolov5s-cls_paddle_model       # PaddlePaddle
"""

import argparse
import os
import platform
import sys
from pathlib import Path

import torch
import torch.nn.functional as F

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.dataloaders import (
    IMG_FORMATS,
    VID_FORMATS,
    LoadImages,
    LoadScreenshots,
    LoadStreams,
)
from utils.general import (
    LOGGER,
    Profile,
    check_file,
    check_img_size,
    check_imshow,
    check_requirements,
    colorstr,
    cv2,
    increment_path,
    print_args,
    strip_optimizer,
)
from utils.plots import Annotator
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
    weights=ROOT / "yolov5s-cls.pt",  # model.pt path(s)
    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)
    data=ROOT / "data/coco128.yaml",  # dataset.yaml path
    imgsz=(224, 224),  # inference size (height, width)
    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu
    view_img=False,  # show results
    save_txt=False,  # save results to *.txt
    nosave=False,  # do not save images/videos
    augment=False,  # augmented inference
    visualize=False,  # visualize features
    update=False,  # update all models
    project=ROOT / "runs/predict-cls",  # save results to project/name
    name="exp",  # save results to project/name
    exist_ok=False,  # existing project/name ok, do not increment
    half=False,  # use FP16 half-precision inference
    dnn=False,  # use OpenCV DNN for ONNX inference
    vid_stride=1,  # video frame-rate stride
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        ".txt"
    )  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ("rtsp://", "rtmp://", "http://", "https://")
    )
    webcam = (
        source.isnumeric()
        or source.endswith(".streams")
        or (is_url and not is_file)
    )
    screenshot = source.lower().startswith("screen")
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(
        Path(project) / name, exist_ok=exist_ok
    )  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True
    )  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(
        weights, device=device, dnn=dnn, data=data, fp16=half
    )
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(
            source,
            img_size=imgsz,
            transforms=classify_transforms(imgsz[0]),
            vid_stride=vid_stride,
        )
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(
            source, img_size=imgsz, stride=stride, auto=pt
        )
    else:
        dataset = LoadImages(
            source,
            img_size=imgsz,
            transforms=classify_transforms(imgsz[0]),
            vid_stride=vid_stride,
        )
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.Tensor(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            results = model(im)

        # Post-process
        with dt[2]:
            pred = F.softmax(results, dim=1)  # probabilities

        # Process predictions
        for i, prob in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f"{i}: "
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / "labels" / p.stem) + (
                "" if dataset.mode == "image" else f"_{frame}"
            )  # im.txt

            s += "%gx%g " % im.shape[2:]  # print string
            annotator = Annotator(im0, example=str(names), pil=True)

            # Print results
            top5i = prob.argsort(0, descending=True)[
                :5
            ].tolist()  # top 5 indices
            s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "

            # Write results
            text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
            if save_img or view_img:  # Add bbox to image
                annotator.text((32, 32), text, txt_color=(255, 255, 255))
            if save_txt:  # Write to file
                with open(f"{txt_path}.txt", "a") as f:
                    f.write(text + "\n")

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == "Linux" and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(
                        str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO
                    )  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[
                                i
                            ].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(
                            Path(save_path).with_suffix(".mp4")
                        )  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path,
                            cv2.VideoWriter_fourcc(*"mp4v"),
                            fps,
                            (w, h),
                        )
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
    LOGGER.info(
        f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}"
        % t
    )
    if save_txt or save_img:
        s = (
            f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
            if save_txt
            else ""
        )
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(
            weights[0]
        )  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--weights",
        nargs="+",
        type=str,
        default=ROOT / "yolov5s-cls.pt",
        help="model path(s)",
    )
    parser.add_argument(
        "--source",
        type=str,
        default=ROOT / "data/images",
        help="file/dir/URL/glob/screen/0(webcam)",
    )
    parser.add_argument(
        "--data",
        type=str,
        default=ROOT / "data/coco128.yaml",
        help="(optional) dataset.yaml path",
    )
    parser.add_argument(
        "--imgsz",
        "--img",
        "--img-size",
        nargs="+",
        type=int,
        default=[224],
        help="inference size h,w",
    )
    parser.add_argument(
        "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
    )
    parser.add_argument("--view-img", action="store_true", help="show results")
    parser.add_argument(
        "--save-txt", action="store_true", help="save results to *.txt"
    )
    parser.add_argument(
        "--nosave", action="store_true", help="do not save images/videos"
    )
    parser.add_argument(
        "--augment", action="store_true", help="augmented inference"
    )
    parser.add_argument(
        "--visualize", action="store_true", help="visualize features"
    )
    parser.add_argument(
        "--update", action="store_true", help="update all models"
    )
    parser.add_argument(
        "--project",
        default=ROOT / "runs/predict-cls",
        help="save results to project/name",
    )
    parser.add_argument(
        "--name", default="exp", help="save results to project/name"
    )
    parser.add_argument(
        "--exist-ok",
        action="store_true",
        help="existing project/name ok, do not increment",
    )
    parser.add_argument(
        "--half", action="store_true", help="use FP16 half-precision inference"
    )
    parser.add_argument(
        "--dnn", action="store_true", help="use OpenCV DNN for ONNX inference"
    )
    parser.add_argument(
        "--vid-stride", type=int, default=1, help="video frame-rate stride"
    )
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    check_requirements(exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)