File size: 7,578 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import glob
import json
import os
import xml.etree.ElementTree as ET

import cv2

# from sklearn.externals import joblib
import joblib
import numpy as np
import pandas as pd

# from .variables import old_ocr_req_cols
# from .skew_correction import  PageSkewWraper

const_HW = 1.294117647
const_W = 600
# https://www.forbes.com/sites/forbestechcouncil/2020/06/02/leveraging-technologies-to-align-realograms-and-planograms-for-grocery/?sh=506b8b78e86c


# https://stackoverflow.com/questions/39403183/python-opencv-sorting-contours
# http://devdoc.net/linux/OpenCV-3.2.0/da/d0c/tutorial_bounding_rects_circles.html
# https://stackoverflow.com/questions/10297713/find-contour-of-the-set-of-points-in-opencv
# https://stackoverflow.com/questions/16538774/dealing-with-contours-and-bounding-rectangle-in-opencv-2-4-python-2-7
# https://stackoverflow.com/questions/50308055/creating-bounding-boxes-for-contours
# https://stackoverflow.com/questions/57296398/how-can-i-get-better-results-of-bounding-box-using-find-contours-of-opencv
# http://amroamroamro.github.io/mexopencv/opencv/generalContours_demo1.html
# https://gist.github.com/bigsnarfdude/d811e31ee17495f82f10db12651ae82d
# http://man.hubwiz.com/docset/OpenCV.docset/Contents/Resources/Documents/da/d0c/tutorial_bounding_rects_circles.html
# https://www.analyticsvidhya.com/blog/2021/05/document-layout-detection-and-ocr-with-detectron2/
# https://colab.research.google.com/drive/1m6gaQF6Q4M0IaSjoo_4jWllKJjK-i6fw?usp=sharing#scrollTo=lEyl3wYKHAe1
# https://stackoverflow.com/questions/39403183/python-opencv-sorting-contours
# https://docs.opencv.org/2.4/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html
# https://www.pyimagesearch.com/2016/03/21/ordering-coordinates-clockwise-with-python-and-opencv/


def bucket_sort(df, colmn, ymax_col="ymax", ymin_col="ymin"):
    df["line_number"] = 0
    colmn.append("line_number")
    array_value = df[colmn].values
    start_index = Line_counter = counter = 0
    ymax, ymin, line_no = (
        colmn.index(ymax_col),
        colmn.index(ymin_col),
        colmn.index("line_number"),
    )
    while counter < len(array_value):
        current_ymax = array_value[start_index][ymax]
        for next_index in range(start_index, len(array_value)):
            counter += 1

            next_ymin = array_value[next_index][ymin]
            next_ymax = array_value[next_index][ymax]
            if current_ymax > next_ymin:

                array_value[next_index][line_no] = Line_counter + 1
            #                 if current_ymax < next_ymax:

            #                     current_ymax = next_ymax
            else:
                counter -= 1
                break
        # print(counter, len(array_value), start_index)
        start_index = counter
        Line_counter += 1
    return pd.DataFrame(array_value, columns=colmn)


def do_sorting(df):
    df.sort_values(["ymin", "xmin"], ascending=True, inplace=True)
    df["idx"] = df.index
    if "line_number" in df.columns:
        print("line number removed")
        df.drop("line_number", axis=1, inplace=True)
    req_colns = ["xmin", "ymin", "xmax", "ymax", "idx"]
    temp_df = df.copy()
    temp = bucket_sort(temp_df.copy(), req_colns)
    df = df.merge(temp[["idx", "line_number"]], on="idx")
    df.sort_values(["line_number", "xmin"], ascending=True, inplace=True)
    df = df.reset_index(drop=True)
    df = df.reset_index(drop=True)
    return df


def xml_to_csv(xml_file):
    # https://gist.github.com/rotemtam/88d9a4efae243fc77ed4a0f9917c8f6c
    xml_list = []
    # for xml_file in glob.glob(path + '/*.xml'):
    # https://discuss.streamlit.io/t/unable-to-read-files-using-standard-file-uploader/2258/2
    tree = ET.parse(xml_file)
    root = tree.getroot()
    for member in root.findall("object"):
        bbx = member.find("bndbox")
        xmin = int(bbx.find("xmin").text)
        ymin = int(bbx.find("ymin").text)
        xmax = int(bbx.find("xmax").text)
        ymax = int(bbx.find("ymax").text)
        label = member.find("name").text

        value = (
            root.find("filename").text,
            int(root.find("size")[0].text),
            int(root.find("size")[1].text),
            label,
            xmin,
            ymin,
            xmax,
            ymax,
        )
        xml_list.append(value)
    column_name = [
        "filename",
        "width",
        "height",
        "cls",
        "xmin",
        "ymin",
        "xmax",
        "ymax",
    ]
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df


# def annotate_planogram_compliance(img0, sorted_xml_df, wrong_indexes, target_names):
#     # annotator = Annotator(img0, line_width=3, pil=True)
#     det = sorted_xml_df[['xmin', 'ymin', 'xmax', 'ymax','cls']].values
#     # det[:, :4] = scale_coords((640, 640), det[:, :4], img0.shape).round()
#     for i, (*xyxy, cls) in enumerate(det):

#         c = int(cls)  # integer class

#         if i in wrong_indexes:
#             # print(xyxy, "Wrong detection", (255, 0, 0))
#             label =  "Wrong detection"
#             color = (0,0,255)
#         else:
#             # print(xyxy, label, (0, 255, 0))
#             label = f'{target_names[c]}'
#             color = (0,255, 0)
#         org = (int(xyxy[0]), int(xyxy[1]) )
#         top_left = org
#         bottom_right = (int(xyxy[2]), int(xyxy[3]))
#         # print("#"*50)
#         # print(f"Anooatting cv2 rectangle with shape: { img0.shape}, top left: { top_left}, bottom right: { bottom_right} , color : { color },  thickness: {3}, cv2.LINE_8")
#         # print("#"*50)
#         cv2.rectangle(img0, top_left, bottom_right , color,  3, cv2.LINE_8)

#         cv2.putText(img0, label, tuple(org), cv2. FONT_HERSHEY_SIMPLEX  , 0.5, color)

#     return img0


def annotate_planogram_compliance(
    img0, sorted_df, correct_indexes, wrong_indexes, target_names
):
    # annotator = Annotator(img0, line_width=3, pil=True)
    det = sorted_df[["xmin", "ymin", "xmax", "ymax", "cls"]].values
    # det[:, :4] = scale_coords((640, 640), det[:, :4], img0.shape).round()
    for x, y in zip(*correct_indexes):
        try:
            row = sorted_df[sorted_df["line_number"] == x + 1].iloc[y]
            xyxy = row[["xmin", "ymin", "xmax", "ymax"]].values
            label = f'{target_names[row["cls"]]}'
            color = (0, 255, 0)
            # org = (int(xyxy[0]), int(xyxy[1]) )
            top_left = (int(row["xmin"]), int(row["ymin"]))
            bottom_right = (int(row["xmax"]), int(row["ymax"]))
            cv2.rectangle(img0, top_left, bottom_right, color, 3, cv2.LINE_8)

            cv2.putText(
                img0, label, top_left, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color
            )
        except Exception as e:
            print("Error: " + str(e))
            continue

    for x, y in zip(*wrong_indexes):
        try:
            row = sorted_df[sorted_df["line_number"] == x + 1].iloc[y]
            xyxy = row[["xmin", "ymin", "xmax", "ymax"]].values
            label = f'{target_names[row["cls"]]}'
            color = (0, 0, 255)
            # org = (int(xyxy[0]), int(xyxy[1]) )
            top_left = (row["xmin"], row["ymin"])
            bottom_right = (row["xmax"], row["ymax"])
            cv2.rectangle(img0, top_left, bottom_right, color, 3, cv2.LINE_8)

            cv2.putText(
                img0, label, top_left, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color
            )
        except Exception as e:
            print("Error: " + str(e))
            continue

    return img0