File size: 10,083 Bytes
5b2fcab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.nn as nn
import torch.nn.functional as F

from ..general import xywh2xyxy
from ..loss import FocalLoss, smooth_BCE
from ..metrics import bbox_iou
from ..torch_utils import de_parallel
from .general import crop_mask


class ComputeLoss:
    # Compute losses
    def __init__(self, model, autobalance=False, overlap=False):
        self.sort_obj_iou = False
        self.overlap = overlap
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters
        self.device = device

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(
            pos_weight=torch.tensor([h["cls_pw"]], device=device)
        )
        BCEobj = nn.BCEWithLogitsLoss(
            pos_weight=torch.tensor([h["obj_pw"]], device=device)
        )

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(
            eps=h.get("label_smoothing", 0.0)
        )  # positive, negative BCE targets

        # Focal loss
        g = h["fl_gamma"]  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(
            m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]
        )  # P3-P7
        self.ssi = (
            list(m.stride).index(16) if autobalance else 0
        )  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = (
            BCEcls,
            BCEobj,
            1.0,
            h,
            autobalance,
        )
        self.na = m.na  # number of anchors
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.nm = m.nm  # number of masks
        self.anchors = m.anchors
        self.device = device

    def __call__(self, preds, targets, masks):  # predictions, targets, model
        p, proto = preds
        (
            bs,
            nm,
            mask_h,
            mask_w,
        ) = proto.shape  # batch size, number of masks, mask height, mask width
        lcls = torch.zeros(1, device=self.device)
        lbox = torch.zeros(1, device=self.device)
        lobj = torch.zeros(1, device=self.device)
        lseg = torch.zeros(1, device=self.device)
        tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(
            p, targets
        )  # targets

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros(
                pi.shape[:4], dtype=pi.dtype, device=self.device
            )  # target obj

            n = b.shape[0]  # number of targets
            if n:
                pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split(
                    (2, 2, 1, self.nc, nm), 1
                )  # subset of predictions

                # Box regression
                pxy = pxy.sigmoid() * 2 - 0.5
                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                iou = bbox_iou(
                    pbox, tbox[i], CIoU=True
                ).squeeze()  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                iou = iou.detach().clamp(0).type(tobj.dtype)
                if self.sort_obj_iou:
                    j = iou.argsort()
                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
                if self.gr < 1:
                    iou = (1.0 - self.gr) + self.gr * iou
                tobj[b, a, gj, gi] = iou  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(
                        pcls, self.cn, device=self.device
                    )  # targets
                    t[range(n), tcls[i]] = self.cp
                    lcls += self.BCEcls(pcls, t)  # BCE

                # Mask regression
                if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                    masks = F.interpolate(
                        masks[None], (mask_h, mask_w), mode="nearest"
                    )[0]
                marea = xywhn[i][:, 2:].prod(
                    1
                )  # mask width, height normalized
                mxyxy = xywh2xyxy(
                    xywhn[i]
                    * torch.tensor(
                        [mask_w, mask_h, mask_w, mask_h], device=self.device
                    )
                )
                for bi in b.unique():
                    j = b == bi  # matching index
                    if self.overlap:
                        mask_gti = torch.where(
                            masks[bi][None] == tidxs[i][j].view(-1, 1, 1),
                            1.0,
                            0.0,
                        )
                    else:
                        mask_gti = masks[tidxs[i]][j]
                    lseg += self.single_mask_loss(
                        mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j]
                    )

            obji = self.BCEobj(pi[..., 4], tobj)
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = (
                    self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
                )

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        lbox *= self.hyp["box"]
        lobj *= self.hyp["obj"]
        lcls *= self.hyp["cls"]
        lseg *= self.hyp["box"] / bs

        loss = lbox + lobj + lcls + lseg
        return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        # Mask loss for one image
        pred_mask = (pred @ proto.view(self.nm, -1)).view(
            -1, *proto.shape[1:]
        )  # (n,32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(
            pred_mask, gt_mask, reduction="none"
        )
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()

    def build_targets(self, p, targets):
        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
        na, nt = self.na, targets.shape[0]  # number of anchors, targets
        tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
        gain = torch.ones(
            8, device=self.device
        )  # normalized to gridspace gain
        ai = (
            torch.arange(na, device=self.device)
            .float()
            .view(na, 1)
            .repeat(1, nt)
        )  # same as .repeat_interleave(nt)
        if self.overlap:
            batch = p[0].shape[0]
            ti = []
            for i in range(batch):
                num = (
                    targets[:, 0] == i
                ).sum()  # find number of targets of each image
                ti.append(
                    torch.arange(num, device=self.device)
                    .float()
                    .view(1, num)
                    .repeat(na, 1)
                    + 1
                )  # (na, num)
            ti = torch.cat(ti, 1)  # (na, nt)
        else:
            ti = (
                torch.arange(nt, device=self.device)
                .float()
                .view(1, nt)
                .repeat(na, 1)
            )
        targets = torch.cat(
            (targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2
        )  # append anchor indices

        g = 0.5  # bias
        off = (
            torch.tensor(
                [
                    [0, 0],
                    [1, 0],
                    [0, 1],
                    [-1, 0],
                    [0, -1],  # j,k,l,m
                    # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                ],
                device=self.device,
            ).float()
            * g
        )  # offsets

        for i in range(self.nl):
            anchors, shape = self.anchors[i], p[i].shape
            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain  # shape(3,n,7)
            if nt:
                # Matches
                r = t[..., 4:6] / anchors[:, None]  # wh ratio
                j = (
                    torch.max(r, 1 / r).max(2)[0] < self.hyp["anchor_t"]
                )  # compare
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                t = t[j]  # filter

                # Offsets
                gxy = t[:, 2:4]  # grid xy
                gxi = gain[[2, 3]] - gxy  # inverse
                j, k = ((gxy % 1 < g) & (gxy > 1)).T
                l, m = ((gxi % 1 < g) & (gxi > 1)).T
                j = torch.stack((torch.ones_like(j), j, k, l, m))
                t = t.repeat((5, 1, 1))[j]
                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            else:
                t = targets[0]
                offsets = 0

            # Define
            bc, gxy, gwh, at = t.chunk(
                4, 1
            )  # (image, class), grid xy, grid wh, anchors
            (a, tidx), (b, c) = (
                at.long().T,
                bc.long().T,
            )  # anchors, image, class
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid indices

            # Append
            indices.append(
                (b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))
            )  # image, anchor, grid
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            anch.append(anchors[a])  # anchors
            tcls.append(c)  # class
            tidxs.append(tidx)
            xywhn.append(
                torch.cat((gxy, gwh), 1) / gain[2:6]
            )  # xywh normalized

        return tcls, tbox, indices, anch, tidxs, xywhn