Spaces:
Sleeping
Sleeping
File size: 19,432 Bytes
14ad967 6aff73d 14ad967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from langchain_groq import ChatGroq
from langgraph.checkpoint.sqlite.aio import AsyncSqliteSaver
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
# from langchain_community.vectorstores import Chroma
from langchain_chroma import Chroma
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
import pickle
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
from typing import List
from typing_extensions import TypedDict
from langgraph.graph import END, StateGraph, START
import subprocess
import time
import re
import json
import os
from dotenv import load_dotenv
load_dotenv()
# Add after your imports
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# llm = ChatOllama(model="codestral")
expt_llm = "gpt-4o-mini"
llm = ChatOpenAI(temperature=0, model=expt_llm)
## Create retrieval from existing store
# Load the existing vectorstore
# Load an existing (saved) embedding model from a pickle file
# model_path = "/Model/embedding_model.pkl"
model_path = "embedding_model.pkl"
with open(model_path, 'rb') as f:
embedding_model = pickle.load(f)
print("Loaded embedding model successfully")
vectorstore = Chroma(
collection_name="solcoder-chroma",
embedding_function=embedding_model,
persist_directory="solcoder-db"
)
retriever = vectorstore.as_retriever()
# Grader prompt
code_gen_prompt = ChatPromptTemplate(
[
(
"system",
"""<instructions> You are a coding assistant with expertise in Solana Blockchain ecosystem. \n
Here is a set of Solana development documentation based on a user question: \n ------- \n {context} \n ------- \n
Answer the user question based on the above provided documentation. Ensure any code you provide can be executed with all required imports and variables \n
defined. Structure your answer: 1) a prefix describing the code solution, 2) the imports, 3) the functioning code block. \n
Invoke the code tool to structure the output correctly. </instructions> \n Here is the user question:""",
),
("placeholder", "{messages}"),
]
)
# Data model
class code(BaseModel):
"""Schema for code solutions to questions about Solana development."""
prefix: str = Field(description="Description of the problem and approach")
imports: str = Field(description="Code block import statements")
code: str = Field(description="Code block not including import statements")
language: str = Field(description="programming language the code is implemented")
class Config:
json_schema_extra = {
"example": {
"prefix": "To read the balance of an account from the Solana network, you can use the `@solana/web3.js` library.",
"imports": 'import { clusterApiUrl, Connection, PublicKey, LAMPORTS_PER_SOL,} from "@solana/web3.js";',
"code":"""const connection = new Connection(clusterApiUrl("devnet"), "confirmed");
const wallet = new PublicKey("nicktrLHhYzLmoVbuZQzHUTicd2sfP571orwo9jfc8c");
const balance = await connection.getBalance(wallet);
console.log(`Balance: ${balance / LAMPORTS_PER_SOL} SOL`);""",
"language":"typescript"
}
}
# expt_llm = "codestral"
# llm = ChatOllama(temperature=0, model=expt_llm)
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
structured_llm = code_gen_prompt | llm.with_structured_output(code, include_raw=True)
# Optional: Check for errors in case tool use is flaky
def check_llm_output(tool_output):
"""Check for parse error or failure to call the tool"""
# Error with parsing
if tool_output["parsing_error"]:
# Report back output and parsing errors
print("Parsing error!")
raw_output = str(tool_output["raw"].content)
error = tool_output["parsing_error"]
raise ValueError(
f"Error parsing your output! Be sure to invoke the tool. Output: {raw_output}. \n Parse error: {error}"
)
# Tool was not invoked
elif not tool_output["parsed"]:
print("Failed to invoke tool!")
raise ValueError(
"You did not use the provided tool! Be sure to invoke the tool to structure the output."
)
return tool_output
# Chain with output check
code_chain_raw = (
code_gen_prompt | structured_llm | check_llm_output
)
def insert_errors(inputs):
"""Insert errors for tool parsing in the messages"""
# Get errors
error = inputs["error"]
messages = inputs["messages"]
messages += [
(
"assistant",
f"Retry. You are required to fix the parsing errors: {error} \n\n You must invoke the provided tool.",
)
]
return {
"messages": messages,
"context": inputs["context"],
}
# This will be run as a fallback chain
fallback_chain = insert_errors | code_chain_raw
N = 3 # Max re-tries
code_gen_chain_re_try = code_chain_raw.with_fallbacks(
fallbacks=[fallback_chain] * N, exception_key="error"
)
def parse_output(solution):
"""When we add 'include_raw=True' to structured output,
it will return a dict w 'raw', 'parsed', 'parsing_error'."""
return solution["parsed"]
# Optional: With re-try to correct for failure to invoke tool
code_gen_chain = code_gen_chain_re_try | parse_output
# No re-try
# code_gen_chain = code_gen_prompt | structured_llm | parse_output
### Create State
class GraphState(TypedDict):
"""
Represents the state of our graph.
Attributes:
error : Binary flag for control flow to indicate whether test error was tripped
messages : With user question, error messages, reasoning
generation : Code solution
iterations : Number of tries
"""
error: str
messages: List
generation: List
iterations: int
### HELPER FUNCTIONS
def check_node_typescript_installation():
"""Check if Node.js and TypeScript are properly installed"""
try:
# Check Node.js
node_version = subprocess.run(["node", "--version"],
capture_output=True,
text=True)
if node_version.returncode != 0:
return False, "Node.js is not installed or not in PATH"
# Check TypeScript
tsc_version = subprocess.run(["npx", "tsc", "--version"],
capture_output=True,
text=True)
if tsc_version.returncode != 0:
return False, "TypeScript is not installed. Please run 'npm install -g typescript'"
return True, "Environment OK"
except Exception as e:
return False, f"Error checking environment: {str(e)}"
def create_temp_package_json():
"""Create a temporary package.json file for Node.js execution"""
package_json = {
"name": "temp-code-execution",
"version": "1.0.0",
"type": "module",
"dependencies": {
"typescript": "^4.9.5"
}
}
with open("package.json", "w") as f:
json.dump(package_json, f)
def run_javascript_code(code, is_typescript=False):
"""Execute JavaScript or TypeScript code using Node.js"""
# Check environment first
env_ok, env_message = check_node_typescript_installation()
if not env_ok:
return f"Environment Error: {env_message}"
try:
# Create necessary files
create_temp_package_json()
if is_typescript:
# For TypeScript, we need to compile first
with open("temp_code.ts", "w") as f:
f.write(code)
# Compile TypeScript
compile_process = subprocess.run(
["npx", "tsc", "temp_code.ts", "--module", "ES2020", "--target", "ES2020"],
capture_output=True,
text=True
)
# if compile_process.returncode != 0:
# return f"TypeScript Compilation Error:\n{compile_process.stderr}"
return compile_process
# Run compiled JavaScript
file_to_run = "temp_code.js"
else:
# For JavaScript, write directly to .js file
with open("temp_code.js", "w") as f:
f.write(code)
file_to_run = "temp_code.js"
# Execute the code using Node.js
result = subprocess.run(
["node", file_to_run],
capture_output=True,
text=True
)
# Clean up temporary files
cleanup_files = ["temp_code.js", "temp_code.ts", "package.json"]
for file in cleanup_files:
if os.path.exists(file):
os.remove(file)
# return result.stderr if result.stderr else result.stdout
return result
except Exception as e:
return f"Error: {e}"
def run_rust_code(code):
with open('code.rs', 'w') as file:
file.write(code)
compile_process = subprocess.Popen(['rustc', 'code.rs'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True)
compile_output, compile_errors = compile_process.communicate()
if compile_process.returncode != 0:
return f"Compilation Error: {compile_errors}"
run_process = subprocess.Popen(['./code'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True)
run_output, run_errors = run_process.communicate()
return run_output if not run_errors else run_errors
### Parameter
# Max tries
max_iterations = 3
# Reflect
# flag = 'reflect'
flag = "do not reflect"
### Nodes
def generate(state: GraphState):
"""
Generate a code solution
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation
"""
print("---GENERATING CODE SOLUTION---")
# State
messages = state["messages"]
iterations = state["iterations"]
error = state["error"]
question = state['messages'][-1][1]
# We have been routed back to generation with an error
if error == "yes":
messages += [
(
"user",
"Now, try again. Invoke the code tool to structure the output with a prefix, imports, and code block:",
)
]
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
retrieved_docs = retriever.invoke(question)
formated_docs = format_docs(retrieved_docs)
# Solution
code_solution = code_gen_chain.invoke(
{"context": formated_docs, "messages": messages}
)
messages += [
(
"assistant",
f"{code_solution.prefix} \n Imports: {code_solution.imports} \n Code: {code_solution.code}",
)
]
# Increment
iterations = iterations + 1
return {"generation": code_solution, "messages": messages, "iterations": iterations}
def code_check(state: GraphState):
"""
Check code
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, error
"""
print("---CHECKING CODE---")
# State
messages = state["messages"]
code_solution = state["generation"]
iterations = state["iterations"]
# Get solution components
imports = code_solution.imports
code = code_solution.code
language = code_solution.language
if language.lower()=="python":
# Check imports
try:
exec(imports)
except Exception as e:
print("---CODE IMPORT CHECK: FAILED---")
error_message = [("user", f"Your solution failed the import test: {e}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
# Check execution
try:
exec(imports + "\n" + code)
except Exception as e:
print("---CODE BLOCK CHECK: FAILED---")
error_message = [("user", f"Your solution failed the code execution test: {e}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
if language.lower()=="javascript":
full_code = imports + "\n" + code
result = run_javascript_code(full_code, is_typescript=False)
if result.stderr:
print("---JS CODE BLOCK CHECK: FAILED---")
print(f"This is the error:{result.stderr}")
error_message = [("user", f"Your javascript solution failed the code execution test: {result.stderr}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
if language.lower()=="typescript":
full_code = imports + "\n" + code
result = run_javascript_code(full_code, is_typescript=True)
if result.stderr:
print("---TS CODE BLOCK CHECK: FAILED---")
print(f"This is the error:{result.stderr}")
error_message = [("user", f"Your typesript solution failed the code execution test: {result.stderr}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
if language.lower()=="rust":
full_code = imports + "\n" + code
with open('code.rs', 'w') as file:
file.write(full_code)
compile_process = subprocess.Popen(['rustc', 'code.rs'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True)
compile_output, compile_errors = compile_process.communicate()
if compile_process.stderr:
# return f"Compilation Error: {compile_errors}"
print("---RUST CODE BLOCK CHECK: COMPILATION FAILED---")
print(f"This is the error:{compile_process.stderr}")
error_message = [("user", f"Your rust solution failed the code compilation test: {compile_process.stderr}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
run_process = subprocess.Popen(['./code'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True)
run_output, run_errors = run_process.communicate()
if run_process.stderr:
print("---RUST CODE BLOCK CHECK: RUN FAILED---")
print(f"This is the error:{run_errors}")
error_message = [("user", f"Your rust solution failed the code run test: {run_errors}")]
messages += error_message
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "yes",
}
# return run_output if not run_errors else run_errors
elif language.lower() not in ["rust", "python", "typescript", "javascript"]:
# Can't test the code
print("---CANNOT TEST CODE: CODE NOT IN EXPECTED LANGUAGE---")
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "no",
}
# No errors
print("---NO CODE TEST FAILURES---")
return {
"generation": code_solution,
"messages": messages,
"iterations": iterations,
"error": "no",
}
def reflect(state: GraphState):
"""
Reflect on errors
Args:
state (dict): The current graph state
Returns:
state (dict): New key added to state, generation
"""
print("---REFLECTING ON CODE SOLUTION ERRORS---")
# State
messages = state["messages"]
iterations = state["iterations"]
code_solution = state["generation"]
question = state['messages'][-1][1]
# Prompt reflection
# Post-processing
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
retrieved_docs = retriever.invoke(question)
formated_docs = format_docs(retrieved_docs)
# Add reflection
reflections = code_gen_chain.invoke(
{"context": formated_docs, "messages": messages}
)
messages += [("assistant", f"Here are reflections on the error: {reflections}")]
return {"generation": code_solution, "messages": messages, "iterations": iterations}
### Edges
def decide_to_finish(state: GraphState):
"""
Determines whether to finish.
Args:
state (dict): The current graph state
Returns:
str: Next node to call
"""
error = state["error"]
iterations = state["iterations"]
if error == "no" or iterations == max_iterations:
print("---DECISION: FINISH---")
return "end"
else:
print("---DECISION: RE-TRY SOLUTION---")
if flag == "reflect":
return "reflect"
else:
return "generate"
def get_runnable():
workflow = StateGraph(GraphState)
# Define the nodes
workflow.add_node("generate", generate) # generation solution
workflow.add_node("check_code", code_check) # check code
workflow.add_node("reflect", reflect) # reflect
# Build graph
workflow.add_edge(START, "generate")
workflow.add_edge("generate", "check_code")
workflow.add_conditional_edges(
"check_code",
decide_to_finish,
{
"end": END,
"reflect": "reflect",
"generate": "generate",
},
)
workflow.add_edge("reflect", "generate")
# Remove the checkpointer for now since it's causing issues
code_assistant_app = workflow.compile()
# memory = AsyncSqliteSaver.from_conn_string(":memory:")
# code_assistant_app = workflow.compile(checkpointer=memory)
return code_assistant_app
# if __name__ == "__main__":
# graph = get_runnable()
# prompt = "How do I read from the solana network?"
# print(f'{graph.invoke({"messages": [("user", prompt)], "iterations": 0, "error": ""})}')
|