File size: 12,599 Bytes
2890da2
 
 
 
 
 
3a5b4c3
2890da2
 
a235e07
2890da2
 
3a5b4c3
 
2890da2
2dadba8
 
2890da2
 
5db8369
 
a235e07
 
 
3dac46f
 
a235e07
 
 
3dac46f
 
 
 
 
 
 
a235e07
 
3dac46f
a235e07
 
3dac46f
bfcfd26
 
a235e07
bfcfd26
a235e07
3dac46f
 
a235e07
bfcfd26
a235e07
 
c7e7611
 
a7db21d
c7e7611
 
 
 
 
 
 
 
a7db21d
bfcfd26
a7db21d
 
bfcfd26
 
 
a235e07
bfcfd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a235e07
bfcfd26
 
 
 
 
a235e07
 
bfcfd26
a7db21d
a235e07
bfcfd26
 
 
a235e07
bfcfd26
 
 
 
 
 
 
 
 
 
a235e07
bfcfd26
 
 
a235e07
bfcfd26
 
 
 
a235e07
bfcfd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a235e07
bfcfd26
a235e07
 
bfcfd26
 
a235e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890da2
 
a235e07
 
 
 
bfcfd26
 
a235e07
 
 
bfcfd26
 
 
 
 
 
 
a235e07
bfcfd26
 
a235e07
bfcfd26
 
 
 
 
 
 
 
 
 
 
 
a235e07
bfcfd26
a235e07
bfcfd26
 
 
 
 
 
 
 
 
 
 
a235e07
bfcfd26
 
 
 
 
 
 
 
a235e07
bfcfd26
 
 
 
 
 
 
 
a235e07
8444a08
7593cd9
 
 
8444a08
 
7593cd9
 
bfcfd26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import xgboost as xgb
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import seaborn as sns
import io

# Load models & scalers
xgb_clf = xgb.XGBClassifier()
xgb_clf.load_model("xgb_model.json")
xgb_reg = joblib.load("xgb_pipeline_model.pkl")
scaler_X = joblib.load("scaler_X.pkl")
scaler_y = joblib.load("scaler_y.pkl")
lstm_model = load_model("lstm_revenue_model.keras")

expected_features = xgb_clf.get_booster().feature_names

# Set matplotlib style for dark theme compatibility
plt.style.use('dark_background')

def process_file(file):
    """Process uploaded file (.csv, .xlsx, .xls) and return DataFrame"""
    if file is None:
        return None
    try:
        if file.name.endswith('.csv'):
            df = pd.read_csv(file.name)
        elif file.name.endswith(('.xls', '.xlsx')):
            df = pd.read_excel(file.name, engine='openpyxl')  # you can also try 'xlrd' for .xls
        else:
            gr.Warning("Unsupported file format. Please upload a .csv, .xls, or .xlsx file.")
            return None
        return df
    except Exception as e:
        gr.Warning(f"Error reading file: {str(e)}")
        return None


def run_all_models(file):
    """Run all three models on the uploaded CSV file"""
    if file is None:
        return "Please upload a CSV file", None, None, None, None, None
    
    df = process_file(file)

    if df is None:
        return "Error processing file", None, None, None, None, None
    
    try:
        # CLEAN DATASET: Drop irrelevant columns
        df_clean = df.drop(columns=[col for col in ['Id', 'anomaly_score', 'risk_flag'] if col in df.columns])
        
        # 1. Features for bankruptcy classification (XGBoost raw model)
        clf_features = df_clean.copy()
        clf_features = clf_features.fillna(0)
        clf_features = clf_features.reindex(columns=expected_features, fill_value=0)
        
        # 2. Features for anomaly detection (XGBoost pipeline model)
        reg_features = df_clean.copy()  # Pipeline handles preprocessing internally


        # 1. BANKRUPTCY CLASSIFICATION
        bankruptcy_preds = xgb_clf.predict(clf_features)
        bankruptcy_probs = xgb_clf.predict_proba(clf_features)
        # Create bankruptcy visualization
        fig1, ax1 = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
        ax1.set_facecolor('#1f1f1f')
        
        if len(bankruptcy_preds) == 1:
            bars = ax1.bar(['No Bankruptcy', 'Bankruptcy'], bankruptcy_probs[0], 
                          color=['#4CAF50', '#F44336'], alpha=0.8)
            ax1.set_ylim(0, 1)
            ax1.set_title('Bankruptcy Risk Probability', color='white', fontsize=14)
            ax1.set_ylabel('Probability', color='white')
            bankruptcy_result = f"Prediction: {'High Bankruptcy Risk' if bankruptcy_preds[0] == 1 else 'Low Bankruptcy Risk'}\nConfidence: {max(bankruptcy_probs[0]):.2%}"
        else:
            bankruptcy_count = np.sum(bankruptcy_preds)
            safe_count = len(bankruptcy_preds) - bankruptcy_count
            bars = ax1.bar(['Safe Companies', 'At Risk Companies'], 
                          [safe_count, bankruptcy_count], 
                          color=['#4CAF50', '#F44336'], alpha=0.8)
            ax1.set_title(f'Bankruptcy Analysis for {len(bankruptcy_preds)} Companies', color='white', fontsize=14)
            ax1.set_ylabel('Number of Companies', color='white')
            bankruptcy_result = f"Total Companies: {len(bankruptcy_preds)}\nSafe: {safe_count}\nAt Risk: {bankruptcy_count}"
        
        ax1.tick_params(colors='white')
        ax1.spines['bottom'].set_color('white')
        ax1.spines['left'].set_color('white')
        ax1.spines['top'].set_visible(False)
        ax1.spines['right'].set_visible(False)
        plt.tight_layout()
        
        # 2. ANOMALY DETECTION
        anomaly_preds = xgb_reg.predict(reg_features)
        
        # Create anomaly visualization
        fig2, ax2 = plt.subplots(figsize=(10, 6), facecolor='#1f1f1f')
        ax2.set_facecolor('#1f1f1f')
        
        sns.histplot(anomaly_preds, bins=20, kde=True, ax=ax2, color='#00BCD4', alpha=0.7)
        ax2.set_title('Anomaly Score Distribution', color='white', fontsize=14)
        ax2.set_xlabel('Anomaly Score', color='white')
        ax2.set_ylabel('Frequency', color='white')
        ax2.tick_params(colors='white')
        ax2.spines['bottom'].set_color('white')
        ax2.spines['left'].set_color('white')
        ax2.spines['top'].set_visible(False)
        ax2.spines['right'].set_visible(False)
        plt.tight_layout()
        
        avg_score = np.mean(anomaly_preds)
        high_risk_count = np.sum(anomaly_preds > np.percentile(anomaly_preds, 75))
        anomaly_result = f"Average Anomaly Score: {avg_score:.3f}\nHigh Risk Companies: {high_risk_count}/{len(anomaly_preds)}\nScore Range: {np.min(anomaly_preds):.3f} - {np.max(anomaly_preds):.3f}"
        
        # 3. LSTM REVENUE FORECASTING
        # Extract revenue data from Q1_REVENUES to Q10_REVENUES
        revenue_cols = [f'Q{i}_REVENUES' for i in range(1, 11)]
        missing_cols = [col for col in revenue_cols if col not in df.columns]
        
        if missing_cols:
            lstm_result = f"Missing revenue columns for LSTM: {missing_cols}"
            fig3 = plt.figure(figsize=(10, 6), facecolor='#1f1f1f')
            ax3 = fig3.add_subplot(111, facecolor='#1f1f1f')
            ax3.text(0.5, 0.5, 'Revenue columns not found in dataset', 
                    ha='center', va='center', color='white', fontsize=14)
            ax3.set_xlim(0, 1)
            ax3.set_ylim(0, 1)
            ax3.axis('off')
        else:
            # Use first company's revenue data for LSTM prediction
            revenue_data = df[revenue_cols].iloc[0].values.astype(float)
            
            # Handle missing values in revenue data
            if np.any(np.isnan(revenue_data)) or np.any(revenue_data == 0):
                # Replace NaN and zeros with interpolated values
                mask = ~np.isnan(revenue_data) & (revenue_data != 0)
                if np.sum(mask) > 1:
                    revenue_data[~mask] = np.interp(np.where(~mask)[0], np.where(mask)[0], revenue_data[mask])
                else:
                    revenue_data = np.full_like(revenue_data, np.mean(revenue_data[mask]) if np.sum(mask) > 0 else 1000000)
            
            revenue_data = revenue_data.reshape(1, -1)
            
            # Scale and predict
            revenue_scaled = scaler_X.transform(revenue_data).reshape((1, revenue_data.shape[1], 1))
            pred_scaled = lstm_model.predict(revenue_scaled)
            predicted_revenue = scaler_y.inverse_transform(pred_scaled)[0, 0]
            
            # Create LSTM visualization
            fig3, ax3 = plt.subplots(figsize=(12, 6), facecolor='#1f1f1f')
            ax3.set_facecolor('#1f1f1f')
            
            quarters = [f'Q{i}' for i in range(1, 11)]
            ax3.plot(quarters, revenue_data.flatten(), marker='o', linewidth=2, 
                    markersize=8, color='#2196F3', label='Historical Revenue')
            ax3.plot('Q11', predicted_revenue, marker='X', markersize=15, color='#FF5722', 
                    label=f'Predicted Q11: ${predicted_revenue:,.0f}')
            
            ax3.set_xlabel('Quarter', color='white')
            ax3.set_ylabel('Revenue ($)', color='white')
            ax3.set_title('Revenue Forecast - Next Quarter Prediction', color='white', fontsize=14)
            ax3.legend(facecolor='#2f2f2f', edgecolor='white', labelcolor='white')
            ax3.tick_params(colors='white')
            ax3.spines['bottom'].set_color('white')
            ax3.spines['left'].set_color('white')
            ax3.spines['top'].set_visible(False)
            ax3.spines['right'].set_visible(False)
            ax3.grid(True, alpha=0.3, color='white')
            
            plt.xticks(rotation=45)
            plt.tight_layout()
            
            # Calculate growth rate
            last_revenue = revenue_data.flatten()[-1]
            growth_rate = ((predicted_revenue - last_revenue) / last_revenue) * 100
            lstm_result = f"Predicted Q11 Revenue: ${predicted_revenue:,.0f}\nGrowth from Q10: {growth_rate:+.1f}%\nLast Quarter (Q10): ${last_revenue:,.0f}"
        
        return bankruptcy_result, fig1, anomaly_result, fig2, lstm_result, fig3
        
    except Exception as e:
        error_msg = f"Error in prediction: {str(e)}"
        return error_msg, None, error_msg, None, error_msg, None

# Custom CSS for proper dark mode support
custom_css = """
/* Dark theme for the entire interface */
.gradio-container {
    background-color: #1a1a1a !important;
    color: #ffffff !important;
}

.gr-box {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
}

.gr-form {
    background-color: #2d2d2d !important;
}

.gr-panel {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
}

.gr-button {
    background-color: #0066cc !important;
    color: white !important;
    border: none !important;
}

.gr-button:hover {
    background-color: #0052a3 !important;
}

.gr-input, .gr-textbox {
    background-color: #2d2d2d !important;
    border: 1px solid #404040 !important;
    color: #ffffff !important;
}

.gr-upload {
    background-color: #2d2d2d !important;
    border: 2px dashed #404040 !important;
    color: #ffffff !important;
}

.gr-file {
    background-color: #2d2d2d !important;
    color: #ffffff !important;
}

/* Text and markdown */
.gr-markdown {
    color: #ffffff !important;
}

.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
    color: #ffffff !important;
}

/* Ensure plot backgrounds work with dark theme */
.gr-plot {
    background-color: #1f1f1f !important;
}
"""

# Create the Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base(), title="TriCast AI") as demo:
    gr.Markdown("""
    # πŸš€ TriCast AI
    ### Comprehensive Financial Intelligence Platform
    Upload your company's financial data CSV file to get AI-powered insights across three key areas **simultaneously**.
    """)
    
    gr.Markdown("""
    **πŸ“ Expected CSV Format:**
    Your CSV should contain financial metrics including:
    - Basic info: `industry`, `sector`, `fullTimeEmployees`
    - Risk metrics: `auditRisk`, `boardRisk`, `compensationRisk`, etc.
    - Financial ratios: `trailingPE`, `forwardPE`, `totalDebt`, `totalRevenue`, etc.
    - Quarterly data: `Q1_REVENUES`, `Q2_REVENUES`, ..., `Q10_REVENUES` (for LSTM forecasting)
    - Quarterly financials: `Q*_TOTAL_ASSETS`, `Q*_TOTAL_LIABILITIES`, etc.
    
    πŸ“Š **One Upload = Three AI Models Running Simultaneously!**
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(
                label="πŸ“ Upload Company Financial Data (CSV)", 
                file_types=[".csv"],
                elem_id="file_upload"
            )
            analyze_btn = gr.Button(
                "πŸš€ Run TriCast AI Analysis", 
                variant="primary", 
                size="lg"
            )
    
    gr.Markdown("---")
    

    # Results section with three columns
    with gr.Row():
        with gr.Column():
            gr.Markdown("### 🏦 Bankruptcy Risk Assessment")
            bankruptcy_output = gr.Textbox(
                label="Risk Analysis", 
                lines=4,
                placeholder="Results will appear here..."
            )
            bankruptcy_plot = gr.Plot(label="Risk Visualization")
        
        with gr.Column():
            gr.Markdown("### πŸ“Š Anomaly Detection")
            anomaly_output = gr.Textbox(
                label="Anomaly Analysis", 
                lines=4,
                placeholder="Results will appear here..."
            )
            anomaly_plot = gr.Plot(label="Score Distribution")
        
        with gr.Column():
            gr.Markdown("### πŸ“ˆ Revenue Forecasting")
            lstm_output = gr.Textbox(
                label="Forecast Summary", 
                lines=4,
                placeholder="Results will appear here..."
            )
            lstm_plot = gr.Plot(label="Revenue Forecast")

    analyze_btn.click(
    run_all_models,
    inputs=[file_input],
    outputs=[bankruptcy_output, bankruptcy_plot, anomaly_output, anomaly_plot, lstm_output, lstm_plot]
    )

if __name__ == "__main__":

    demo.launch()