File size: 8,037 Bytes
20fd36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import ldm_patched.modules.samplers
import ldm_patched.modules.model_management

from collections import namedtuple
from ldm_patched.contrib.external_custom_sampler import SDTurboScheduler
from ldm_patched.k_diffusion import sampling as k_diffusion_sampling
from ldm_patched.modules.samplers import normal_scheduler, simple_scheduler, ddim_scheduler
from ldm_patched.modules.model_base import SDXLRefiner, SDXL
from ldm_patched.modules.conds import CONDRegular
from ldm_patched.modules.sample import get_additional_models, get_models_from_cond, cleanup_additional_models
from ldm_patched.modules.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \
    create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_model_conds


current_refiner = None
refiner_switch_step = -1


@torch.no_grad()
@torch.inference_mode()
def clip_separate_inner(c, p, target_model=None, target_clip=None):
    if target_model is None or isinstance(target_model, SDXLRefiner):
        c = c[..., -1280:].clone()
    elif isinstance(target_model, SDXL):
        c = c.clone()
    else:
        p = None
        c = c[..., :768].clone()

        final_layer_norm = target_clip.cond_stage_model.clip_l.transformer.text_model.final_layer_norm

        final_layer_norm_origin_device = final_layer_norm.weight.device
        final_layer_norm_origin_dtype = final_layer_norm.weight.dtype

        c_origin_device = c.device
        c_origin_dtype = c.dtype

        final_layer_norm.to(device='cpu', dtype=torch.float32)
        c = c.to(device='cpu', dtype=torch.float32)

        c = torch.chunk(c, int(c.size(1)) // 77, 1)
        c = [final_layer_norm(ci) for ci in c]
        c = torch.cat(c, dim=1)

        final_layer_norm.to(device=final_layer_norm_origin_device, dtype=final_layer_norm_origin_dtype)
        c = c.to(device=c_origin_device, dtype=c_origin_dtype)
    return c, p


@torch.no_grad()
@torch.inference_mode()
def clip_separate(cond, target_model=None, target_clip=None):
    results = []

    for c, px in cond:
        p = px.get('pooled_output', None)
        c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip)
        p = {} if p is None else {'pooled_output': p.clone()}
        results.append([c, p])

    return results


@torch.no_grad()
@torch.inference_mode()
def clip_separate_after_preparation(cond, target_model=None, target_clip=None):
    results = []

    for x in cond:
        p = x.get('pooled_output', None)
        c = x['model_conds']['c_crossattn'].cond

        c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip)

        result = {'model_conds': {'c_crossattn': CONDRegular(c)}}

        if p is not None:
            result['pooled_output'] = p.clone()

        results.append(result)

    return results


@torch.no_grad()
@torch.inference_mode()
def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
    global current_refiner

    positive = positive[:]
    negative = negative[:]

    resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device)
    resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device)

    model_wrap = wrap_model(model)

    calculate_start_end_timesteps(model, negative)
    calculate_start_end_timesteps(model, positive)

    if latent_image is not None:
        latent_image = model.process_latent_in(latent_image)

    if hasattr(model, 'extra_conds'):
        positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)

    #make sure each cond area has an opposite one with the same area
    for c in positive:
        create_cond_with_same_area_if_none(negative, c)
    for c in negative:
        create_cond_with_same_area_if_none(positive, c)

    # pre_run_control(model, negative + positive)
    pre_run_control(model, positive)  # negative is not necessary in Fooocus, 0.5s faster.

    apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x])
    apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])

    extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed}

    if current_refiner is not None and hasattr(current_refiner.model, 'extra_conds'):
        positive_refiner = clip_separate_after_preparation(positive, target_model=current_refiner.model)
        negative_refiner = clip_separate_after_preparation(negative, target_model=current_refiner.model)

        positive_refiner = encode_model_conds(current_refiner.model.extra_conds, positive_refiner, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask)
        negative_refiner = encode_model_conds(current_refiner.model.extra_conds, negative_refiner, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask)

    def refiner_switch():
        cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control")))

        extra_args["cond"] = positive_refiner
        extra_args["uncond"] = negative_refiner

        # clear ip-adapter for refiner
        extra_args['model_options'] = {k: {} if k == 'transformer_options' else v for k, v in extra_args['model_options'].items()}

        models, inference_memory = get_additional_models(positive_refiner, negative_refiner, current_refiner.model_dtype())
        ldm_patched.modules.model_management.load_models_gpu(
            [current_refiner] + models,
            model.memory_required([noise.shape[0] * 2] + list(noise.shape[1:])) + inference_memory)

        model_wrap.inner_model = current_refiner.model
        print('Refiner Swapped')
        return

    def callback_wrap(step, x0, x, total_steps):
        if step == refiner_switch_step and current_refiner is not None:
            refiner_switch()
        if callback is not None:
            # residual_noise_preview = x - x0
            # residual_noise_preview /= residual_noise_preview.std()
            # residual_noise_preview *= x0.std()
            callback(step, x0, x, total_steps)

    samples = sampler.sample(model_wrap, sigmas, extra_args, callback_wrap, noise, latent_image, denoise_mask, disable_pbar)
    return model.process_latent_out(samples.to(torch.float32))


@torch.no_grad()
@torch.inference_mode()
def calculate_sigmas_scheduler_hacked(model, scheduler_name, steps):
    if scheduler_name == "karras":
        sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
    elif scheduler_name == "exponential":
        sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max))
    elif scheduler_name == "normal":
        sigmas = normal_scheduler(model, steps)
    elif scheduler_name == "simple":
        sigmas = simple_scheduler(model, steps)
    elif scheduler_name == "ddim_uniform":
        sigmas = ddim_scheduler(model, steps)
    elif scheduler_name == "sgm_uniform":
        sigmas = normal_scheduler(model, steps, sgm=True)
    elif scheduler_name == "turbo":
        sigmas = SDTurboScheduler().get_sigmas(namedtuple('Patcher', ['model'])(model=model), steps=steps, denoise=1.0)[0]
    else:
        raise TypeError("error invalid scheduler")
    return sigmas


ldm_patched.modules.samplers.calculate_sigmas_scheduler = calculate_sigmas_scheduler_hacked
ldm_patched.modules.samplers.sample = sample_hacked