File size: 4,749 Bytes
20fd36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

import ldm_patched.modules.utils
import torch

def reshape_latent_to(target_shape, latent):
    if latent.shape[1:] != target_shape[1:]:
        latent = ldm_patched.modules.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
    return ldm_patched.modules.utils.repeat_to_batch_size(latent, target_shape[0])


class LatentAdd:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "op"

    CATEGORY = "latent/advanced"

    def op(self, samples1, samples2):
        samples_out = samples1.copy()

        s1 = samples1["samples"]
        s2 = samples2["samples"]

        s2 = reshape_latent_to(s1.shape, s2)
        samples_out["samples"] = s1 + s2
        return (samples_out,)

class LatentSubtract:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "op"

    CATEGORY = "latent/advanced"

    def op(self, samples1, samples2):
        samples_out = samples1.copy()

        s1 = samples1["samples"]
        s2 = samples2["samples"]

        s2 = reshape_latent_to(s1.shape, s2)
        samples_out["samples"] = s1 - s2
        return (samples_out,)

class LatentMultiply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                             }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "op"

    CATEGORY = "latent/advanced"

    def op(self, samples, multiplier):
        samples_out = samples.copy()

        s1 = samples["samples"]
        samples_out["samples"] = s1 * multiplier
        return (samples_out,)

class LatentInterpolate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples1": ("LATENT",),
                              "samples2": ("LATENT",),
                              "ratio": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "op"

    CATEGORY = "latent/advanced"

    def op(self, samples1, samples2, ratio):
        samples_out = samples1.copy()

        s1 = samples1["samples"]
        s2 = samples2["samples"]

        s2 = reshape_latent_to(s1.shape, s2)

        m1 = torch.linalg.vector_norm(s1, dim=(1))
        m2 = torch.linalg.vector_norm(s2, dim=(1))

        s1 = torch.nan_to_num(s1 / m1)
        s2 = torch.nan_to_num(s2 / m2)

        t = (s1 * ratio + s2 * (1.0 - ratio))
        mt = torch.linalg.vector_norm(t, dim=(1))
        st = torch.nan_to_num(t / mt)

        samples_out["samples"] = st * (m1 * ratio + m2 * (1.0 - ratio))
        return (samples_out,)

class LatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "batch"

    CATEGORY = "latent/batch"

    def batch(self, samples1, samples2):
        samples_out = samples1.copy()
        s1 = samples1["samples"]
        s2 = samples2["samples"]

        if s1.shape[1:] != s2.shape[1:]:
            s2 = ldm_patched.modules.utils.common_upscale(s2, s1.shape[3], s1.shape[2], "bilinear", "center")
        s = torch.cat((s1, s2), dim=0)
        samples_out["samples"] = s
        samples_out["batch_index"] = samples1.get("batch_index", [x for x in range(0, s1.shape[0])]) + samples2.get("batch_index", [x for x in range(0, s2.shape[0])])
        return (samples_out,)

class LatentBatchSeedBehavior:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "seed_behavior": (["random", "fixed"],),}}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "op"

    CATEGORY = "latent/advanced"

    def op(self, samples, seed_behavior):
        samples_out = samples.copy()
        latent = samples["samples"]
        if seed_behavior == "random":
            if 'batch_index' in samples_out:
                samples_out.pop('batch_index')
        elif seed_behavior == "fixed":
            batch_number = samples_out.get("batch_index", [0])[0]
            samples_out["batch_index"] = [batch_number] * latent.shape[0]

        return (samples_out,)

NODE_CLASS_MAPPINGS = {
    "LatentAdd": LatentAdd,
    "LatentSubtract": LatentSubtract,
    "LatentMultiply": LatentMultiply,
    "LatentInterpolate": LatentInterpolate,
    "LatentBatch": LatentBatch,
    "LatentBatchSeedBehavior": LatentBatchSeedBehavior,
}