File size: 10,960 Bytes
20fd36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import ldm_patched.modules.clip_vision
import safetensors.torch as sf
import ldm_patched.modules.model_management as model_management
import ldm_patched.ldm.modules.attention as attention

from extras.resampler import Resampler
from ldm_patched.modules.model_patcher import ModelPatcher
from modules.core import numpy_to_pytorch
from modules.ops import use_patched_ops
from ldm_patched.modules.ops import manual_cast


SD_V12_CHANNELS = [320] * 4 + [640] * 4 + [1280] * 4 + [1280] * 6 + [640] * 6 + [320] * 6 + [1280] * 2
SD_XL_CHANNELS = [640] * 8 + [1280] * 40 + [1280] * 60 + [640] * 12 + [1280] * 20


def sdp(q, k, v, extra_options):
    return attention.optimized_attention(q, k, v, heads=extra_options["n_heads"], mask=None)


class ImageProjModel(torch.nn.Module):
    def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
        super().__init__()

        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens,
                                                              self.cross_attention_dim)
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens


class To_KV(torch.nn.Module):
    def __init__(self, cross_attention_dim):
        super().__init__()

        channels = SD_XL_CHANNELS if cross_attention_dim == 2048 else SD_V12_CHANNELS
        self.to_kvs = torch.nn.ModuleList(
            [torch.nn.Linear(cross_attention_dim, channel, bias=False) for channel in channels])

    def load_state_dict_ordered(self, sd):
        state_dict = []
        for i in range(4096):
            for k in ['k', 'v']:
                key = f'{i}.to_{k}_ip.weight'
                if key in sd:
                    state_dict.append(sd[key])
        for i, v in enumerate(state_dict):
            self.to_kvs[i].weight = torch.nn.Parameter(v, requires_grad=False)


class IPAdapterModel(torch.nn.Module):
    def __init__(self, state_dict, plus, cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4,
                 sdxl_plus=False):
        super().__init__()
        self.plus = plus
        if self.plus:
            self.image_proj_model = Resampler(
                dim=1280 if sdxl_plus else cross_attention_dim,
                depth=4,
                dim_head=64,
                heads=20 if sdxl_plus else 12,
                num_queries=clip_extra_context_tokens,
                embedding_dim=clip_embeddings_dim,
                output_dim=cross_attention_dim,
                ff_mult=4
            )
        else:
            self.image_proj_model = ImageProjModel(
                cross_attention_dim=cross_attention_dim,
                clip_embeddings_dim=clip_embeddings_dim,
                clip_extra_context_tokens=clip_extra_context_tokens
            )

        self.image_proj_model.load_state_dict(state_dict["image_proj"])
        self.ip_layers = To_KV(cross_attention_dim)
        self.ip_layers.load_state_dict_ordered(state_dict["ip_adapter"])


clip_vision: ldm_patched.modules.clip_vision.ClipVisionModel = None
ip_negative: torch.Tensor = None
ip_adapters: dict = {}


def load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path):
    global clip_vision, ip_negative, ip_adapters

    if clip_vision is None and isinstance(clip_vision_path, str):
        clip_vision = ldm_patched.modules.clip_vision.load(clip_vision_path)

    if ip_negative is None and isinstance(ip_negative_path, str):
        ip_negative = sf.load_file(ip_negative_path)['data']

    if not isinstance(ip_adapter_path, str) or ip_adapter_path in ip_adapters:
        return

    load_device = model_management.get_torch_device()
    offload_device = torch.device('cpu')

    use_fp16 = model_management.should_use_fp16(device=load_device)
    ip_state_dict = torch.load(ip_adapter_path, map_location="cpu")
    plus = "latents" in ip_state_dict["image_proj"]
    cross_attention_dim = ip_state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[1]
    sdxl = cross_attention_dim == 2048
    sdxl_plus = sdxl and plus

    if plus:
        clip_extra_context_tokens = ip_state_dict["image_proj"]["latents"].shape[1]
        clip_embeddings_dim = ip_state_dict["image_proj"]["latents"].shape[2]
    else:
        clip_extra_context_tokens = ip_state_dict["image_proj"]["proj.weight"].shape[0] // cross_attention_dim
        clip_embeddings_dim = None

    with use_patched_ops(manual_cast):
        ip_adapter = IPAdapterModel(
            ip_state_dict,
            plus=plus,
            cross_attention_dim=cross_attention_dim,
            clip_embeddings_dim=clip_embeddings_dim,
            clip_extra_context_tokens=clip_extra_context_tokens,
            sdxl_plus=sdxl_plus
        )

    ip_adapter.sdxl = sdxl
    ip_adapter.load_device = load_device
    ip_adapter.offload_device = offload_device
    ip_adapter.dtype = torch.float16 if use_fp16 else torch.float32
    ip_adapter.to(offload_device, dtype=ip_adapter.dtype)

    image_proj_model = ModelPatcher(model=ip_adapter.image_proj_model, load_device=load_device,
                                    offload_device=offload_device)
    ip_layers = ModelPatcher(model=ip_adapter.ip_layers, load_device=load_device,
                             offload_device=offload_device)

    ip_adapters[ip_adapter_path] = dict(
        ip_adapter=ip_adapter,
        image_proj_model=image_proj_model,
        ip_layers=ip_layers,
        ip_unconds=None
    )

    return


@torch.no_grad()
@torch.inference_mode()
def clip_preprocess(image):
    mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
    std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype).view([1, 3, 1, 1])
    image = image.movedim(-1, 1)

    # https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75
    B, C, H, W = image.shape
    assert H == 224 and W == 224

    return (image - mean) / std


@torch.no_grad()
@torch.inference_mode()
def preprocess(img, ip_adapter_path):
    global ip_adapters
    entry = ip_adapters[ip_adapter_path]

    ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher)
    pixel_values = clip_preprocess(numpy_to_pytorch(img).to(clip_vision.load_device))
    outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True)

    ip_adapter = entry['ip_adapter']
    ip_layers = entry['ip_layers']
    image_proj_model = entry['image_proj_model']
    ip_unconds = entry['ip_unconds']

    if ip_adapter.plus:
        cond = outputs.hidden_states[-2]
    else:
        cond = outputs.image_embeds

    cond = cond.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)

    ldm_patched.modules.model_management.load_model_gpu(image_proj_model)
    cond = image_proj_model.model(cond).to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)

    ldm_patched.modules.model_management.load_model_gpu(ip_layers)

    if ip_unconds is None:
        uncond = ip_negative.to(device=ip_adapter.load_device, dtype=ip_adapter.dtype)
        ip_unconds = [m(uncond).cpu() for m in ip_layers.model.to_kvs]
        entry['ip_unconds'] = ip_unconds

    ip_conds = [m(cond).cpu() for m in ip_layers.model.to_kvs]

    return ip_conds, ip_unconds


@torch.no_grad()
@torch.inference_mode()
def patch_model(model, tasks):
    new_model = model.clone()

    def make_attn_patcher(ip_index):
        def patcher(n, context_attn2, value_attn2, extra_options):
            org_dtype = n.dtype
            current_step = float(model.model.diffusion_model.current_step.detach().cpu().numpy()[0])
            cond_or_uncond = extra_options['cond_or_uncond']

            q = n
            k = [context_attn2]
            v = [value_attn2]
            b, _, _ = q.shape

            for (cs, ucs), cn_stop, cn_weight in tasks:
                if current_step < cn_stop:
                    ip_k_c = cs[ip_index * 2].to(q)
                    ip_v_c = cs[ip_index * 2 + 1].to(q)
                    ip_k_uc = ucs[ip_index * 2].to(q)
                    ip_v_uc = ucs[ip_index * 2 + 1].to(q)

                    ip_k = torch.cat([(ip_k_c, ip_k_uc)[i] for i in cond_or_uncond], dim=0)
                    ip_v = torch.cat([(ip_v_c, ip_v_uc)[i] for i in cond_or_uncond], dim=0)

                    # Midjourney's attention formulation of image prompt (non-official reimplementation)
                    # Written by Lvmin Zhang at Stanford University, 2023 Dec
                    # For non-commercial use only - if you use this in commercial project then
                    # probably it has some intellectual property issues.
                    # Contact lvminzhang@acm.org if you are not sure.

                    # Below is the sensitive part with potential intellectual property issues.

                    ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
                    ip_v_offset = ip_v - ip_v_mean

                    B, F, C = ip_k.shape
                    channel_penalty = float(C) / 1280.0
                    weight = cn_weight * channel_penalty

                    ip_k = ip_k * weight
                    ip_v = ip_v_offset + ip_v_mean * weight

                    k.append(ip_k)
                    v.append(ip_v)

            k = torch.cat(k, dim=1)
            v = torch.cat(v, dim=1)
            out = sdp(q, k, v, extra_options)


            return out.to(dtype=org_dtype)
        return patcher

    def set_model_patch_replace(model, number, key):
        to = model.model_options["transformer_options"]
        if "patches_replace" not in to:
            to["patches_replace"] = {}
        if "attn2" not in to["patches_replace"]:
            to["patches_replace"]["attn2"] = {}
        if key not in to["patches_replace"]["attn2"]:
            to["patches_replace"]["attn2"][key] = make_attn_patcher(number)

    number = 0

    for id in [4, 5, 7, 8]:
        block_indices = range(2) if id in [4, 5] else range(10)
        for index in block_indices:
            set_model_patch_replace(new_model, number, ("input", id, index))
            number += 1

    for id in range(6):
        block_indices = range(2) if id in [3, 4, 5] else range(10)
        for index in block_indices:
            set_model_patch_replace(new_model, number, ("output", id, index))
            number += 1

    for index in range(10):
        set_model_patch_replace(new_model, number, ("middle", 0, index))
        number += 1

    return new_model