File size: 6,477 Bytes
20fd36d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""Modified from https://github.com/chaofengc/PSFRGAN
"""
import numpy as np
import torch.nn as nn
from torch.nn import functional as F


class NormLayer(nn.Module):
    """Normalization Layers.

    Args:
        channels: input channels, for batch norm and instance norm.
        input_size: input shape without batch size, for layer norm.
    """

    def __init__(self, channels, normalize_shape=None, norm_type='bn'):
        super(NormLayer, self).__init__()
        norm_type = norm_type.lower()
        self.norm_type = norm_type
        if norm_type == 'bn':
            self.norm = nn.BatchNorm2d(channels, affine=True)
        elif norm_type == 'in':
            self.norm = nn.InstanceNorm2d(channels, affine=False)
        elif norm_type == 'gn':
            self.norm = nn.GroupNorm(32, channels, affine=True)
        elif norm_type == 'pixel':
            self.norm = lambda x: F.normalize(x, p=2, dim=1)
        elif norm_type == 'layer':
            self.norm = nn.LayerNorm(normalize_shape)
        elif norm_type == 'none':
            self.norm = lambda x: x * 1.0
        else:
            assert 1 == 0, f'Norm type {norm_type} not support.'

    def forward(self, x, ref=None):
        if self.norm_type == 'spade':
            return self.norm(x, ref)
        else:
            return self.norm(x)


class ReluLayer(nn.Module):
    """Relu Layer.

    Args:
        relu type: type of relu layer, candidates are
            - ReLU
            - LeakyReLU: default relu slope 0.2
            - PRelu
            - SELU
            - none: direct pass
    """

    def __init__(self, channels, relu_type='relu'):
        super(ReluLayer, self).__init__()
        relu_type = relu_type.lower()
        if relu_type == 'relu':
            self.func = nn.ReLU(True)
        elif relu_type == 'leakyrelu':
            self.func = nn.LeakyReLU(0.2, inplace=True)
        elif relu_type == 'prelu':
            self.func = nn.PReLU(channels)
        elif relu_type == 'selu':
            self.func = nn.SELU(True)
        elif relu_type == 'none':
            self.func = lambda x: x * 1.0
        else:
            assert 1 == 0, f'Relu type {relu_type} not support.'

    def forward(self, x):
        return self.func(x)


class ConvLayer(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 scale='none',
                 norm_type='none',
                 relu_type='none',
                 use_pad=True,
                 bias=True):
        super(ConvLayer, self).__init__()
        self.use_pad = use_pad
        self.norm_type = norm_type
        if norm_type in ['bn']:
            bias = False

        stride = 2 if scale == 'down' else 1

        self.scale_func = lambda x: x
        if scale == 'up':
            self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')

        self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
        self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)

        self.relu = ReluLayer(out_channels, relu_type)
        self.norm = NormLayer(out_channels, norm_type=norm_type)

    def forward(self, x):
        out = self.scale_func(x)
        if self.use_pad:
            out = self.reflection_pad(out)
        out = self.conv2d(out)
        out = self.norm(out)
        out = self.relu(out)
        return out


class ResidualBlock(nn.Module):
    """
    Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
    """

    def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
        super(ResidualBlock, self).__init__()

        if scale == 'none' and c_in == c_out:
            self.shortcut_func = lambda x: x
        else:
            self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)

        scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
        scale_conf = scale_config_dict[scale]

        self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
        self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')

    def forward(self, x):
        identity = self.shortcut_func(x)

        res = self.conv1(x)
        res = self.conv2(res)
        return identity + res


class ParseNet(nn.Module):

    def __init__(self,
                 in_size=128,
                 out_size=128,
                 min_feat_size=32,
                 base_ch=64,
                 parsing_ch=19,
                 res_depth=10,
                 relu_type='LeakyReLU',
                 norm_type='bn',
                 ch_range=[32, 256]):
        super().__init__()
        self.res_depth = res_depth
        act_args = {'norm_type': norm_type, 'relu_type': relu_type}
        min_ch, max_ch = ch_range

        ch_clip = lambda x: max(min_ch, min(x, max_ch))  # noqa: E731
        min_feat_size = min(in_size, min_feat_size)

        down_steps = int(np.log2(in_size // min_feat_size))
        up_steps = int(np.log2(out_size // min_feat_size))

        # =============== define encoder-body-decoder ====================
        self.encoder = []
        self.encoder.append(ConvLayer(3, base_ch, 3, 1))
        head_ch = base_ch
        for i in range(down_steps):
            cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
            self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
            head_ch = head_ch * 2

        self.body = []
        for i in range(res_depth):
            self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))

        self.decoder = []
        for i in range(up_steps):
            cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
            self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
            head_ch = head_ch // 2

        self.encoder = nn.Sequential(*self.encoder)
        self.body = nn.Sequential(*self.body)
        self.decoder = nn.Sequential(*self.decoder)
        self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
        self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)

    def forward(self, x):
        feat = self.encoder(x)
        x = feat + self.body(feat)
        x = self.decoder(x)
        out_img = self.out_img_conv(x)
        out_mask = self.out_mask_conv(x)
        return out_mask, out_img