Spaces:
Configuration error
Configuration error
File size: 5,190 Bytes
20fd36d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .resnet import ResNet18
class ConvBNReLU(nn.Module):
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
super(ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_chan)
def forward(self, x):
x = self.conv(x)
x = F.relu(self.bn(x))
return x
class BiSeNetOutput(nn.Module):
def __init__(self, in_chan, mid_chan, num_class):
super(BiSeNetOutput, self).__init__()
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
def forward(self, x):
feat = self.conv(x)
out = self.conv_out(feat)
return out, feat
class AttentionRefinementModule(nn.Module):
def __init__(self, in_chan, out_chan):
super(AttentionRefinementModule, self).__init__()
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
self.bn_atten = nn.BatchNorm2d(out_chan)
self.sigmoid_atten = nn.Sigmoid()
def forward(self, x):
feat = self.conv(x)
atten = F.avg_pool2d(feat, feat.size()[2:])
atten = self.conv_atten(atten)
atten = self.bn_atten(atten)
atten = self.sigmoid_atten(atten)
out = torch.mul(feat, atten)
return out
class ContextPath(nn.Module):
def __init__(self):
super(ContextPath, self).__init__()
self.resnet = ResNet18()
self.arm16 = AttentionRefinementModule(256, 128)
self.arm32 = AttentionRefinementModule(512, 128)
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
def forward(self, x):
feat8, feat16, feat32 = self.resnet(x)
h8, w8 = feat8.size()[2:]
h16, w16 = feat16.size()[2:]
h32, w32 = feat32.size()[2:]
avg = F.avg_pool2d(feat32, feat32.size()[2:])
avg = self.conv_avg(avg)
avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
feat32_arm = self.arm32(feat32)
feat32_sum = feat32_arm + avg_up
feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
feat32_up = self.conv_head32(feat32_up)
feat16_arm = self.arm16(feat16)
feat16_sum = feat16_arm + feat32_up
feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
feat16_up = self.conv_head16(feat16_up)
return feat8, feat16_up, feat32_up # x8, x8, x16
class FeatureFusionModule(nn.Module):
def __init__(self, in_chan, out_chan):
super(FeatureFusionModule, self).__init__()
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, fsp, fcp):
fcat = torch.cat([fsp, fcp], dim=1)
feat = self.convblk(fcat)
atten = F.avg_pool2d(feat, feat.size()[2:])
atten = self.conv1(atten)
atten = self.relu(atten)
atten = self.conv2(atten)
atten = self.sigmoid(atten)
feat_atten = torch.mul(feat, atten)
feat_out = feat_atten + feat
return feat_out
class BiSeNet(nn.Module):
def __init__(self, num_class):
super(BiSeNet, self).__init__()
self.cp = ContextPath()
self.ffm = FeatureFusionModule(256, 256)
self.conv_out = BiSeNetOutput(256, 256, num_class)
self.conv_out16 = BiSeNetOutput(128, 64, num_class)
self.conv_out32 = BiSeNetOutput(128, 64, num_class)
def forward(self, x, return_feat=False):
h, w = x.size()[2:]
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
feat_fuse = self.ffm(feat_sp, feat_cp8)
out, feat = self.conv_out(feat_fuse)
out16, feat16 = self.conv_out16(feat_cp8)
out32, feat32 = self.conv_out32(feat_cp16)
out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
if return_feat:
feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
return out, out16, out32, feat, feat16, feat32
else:
return out, out16, out32
|