Spaces:
Runtime error
Runtime error
File size: 16,153 Bytes
28a38bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import asyncio
import string, re
import pandas as pd
from aiogoogletrans import Translator
from spellchecker import SpellChecker
from nltk.tokenize import RegexpTokenizer
class Normalizer:
"""
A class for text normalization tasks such as converting to lowercase,
removing whitespace, punctuation, HTML tags, emojis, etc.
"""
def __init__(self):
"""
Initializes the Normalizer object.
"""
# Letter variations dictionary
self._letter_variations = {
"aàáâãäåāăą": "a",
"cçćĉċč": "c",
"eèéêëēĕėęě": "e",
"gğ": "g",
"hħĥ": "h",
"iìíîïīĭįı": "i",
"jĵ": "j",
"nñńņň": "n",
"oòóôõöøōŏő": "o",
"ś": "s",
"ß": "ss",
"uùúûüūŭůűų": "u",
"yýÿŷ": "y",
"æ": "ae",
"œ": "oe",
}
# Generate regex pattern including single characters
pattern_parts = []
for variation in self._letter_variations.keys():
pattern_parts.append(variation)
for char in variation:
if len(char) == 1:
pattern_parts.append(re.escape(char))
self._pattern = "|".join(pattern_parts)
# RegexpTokenizer
self._regexp = RegexpTokenizer("[\w']+")
# Dictionary of acronyms
acronyms_url = "https://raw.githubusercontent.com/sugatagh/E-commerce-Text-Classification/main/JSON/english_acronyms.json"
self._acronyms_dict = pd.read_json(acronyms_url, typ="series")
self._acronyms_list = list(self._acronyms_dict.keys())
# Dictionary of contractions
contractions_url = "https://raw.githubusercontent.com/sugatagh/E-commerce-Text-Classification/main/JSON/english_contractions.json"
self._contractions_dict = pd.read_json(contractions_url, typ="series")
self._contractions_list = list(self._contractions_dict.keys())
# Initialize translator for language detection
self._translator = Translator()
# Converting to lowercase
def _convert_to_lowercase(self, text):
"""
Convert the input text to lowercase.
Args:
text (str): The input text to be converted.
Returns:
str: The input text converted to lowercase.
"""
try:
return text.lower()
except Exception as e:
print(f"An error occurred during lowercase conversion: {e}")
return text
# Removing whitespaces
def _remove_whitespace(self, text):
"""
Remove leading and trailing whitespaces from the input text.
Args:
text (str): The input text to be processed.
Returns:
str: The input text with leading and trailing whitespaces removed.
"""
try:
return text.strip()
except Exception as e:
print(f"An error occurred during whitespace removal: {e}")
return text
# Removing punctuations
def _remove_punctuation(self, text):
"""
Remove punctuation marks from the input text, except for apostrophes and percent signs.
Args:
text (str): The input text to be processed.
Returns:
str: The input text with punctuation marks removed.
"""
try:
punct_str = string.punctuation
punct_str = punct_str.replace("'", "").replace(
"%", ""
) # discarding apostrophe from the string to keep the contractions intact
return text.translate(str.maketrans("", "", punct_str))
except Exception as e:
print(f"An error occurred during punctuation removal: {e}")
return text
# Removing HTML tags
def _remove_html(self, text):
"""
Remove HTML tags from the input text.
Args:
text (str): The input text containing HTML tags.
Returns:
str: The input text with HTML tags removed.
"""
try:
html = re.compile(r"<.*?>")
return html.sub(r"", text)
except Exception as e:
print(f"An error occurred during HTML tag removal: {e}")
return text
# Removing emojis
def _remove_emoji(self, text):
"""
Remove emojis from the input text.
Args:
text (str): The input text containing emojis.
Returns:
str: The input text with emojis removed.
"""
try:
emoji_pattern = re.compile(
"["
"\U0001F600-\U0001F64F" # emoticons
"\U0001F300-\U0001F5FF" # symbols & pictographs
"\U0001F680-\U0001F6FF" # transport & map symbols
"\U0001F1E0-\U0001F1FF" # flags (iOS)
"\U00002702-\U000027B0"
"\U000024C2-\U0001F251"
"]+",
flags=re.UNICODE,
)
return emoji_pattern.sub(r"", text)
except Exception as e:
print(f"An error occurred during emoji removal: {e}")
return text
# Removing other unicode characters
def _remove_http(self, text):
"""
Remove HTTP links from the input text.
Args:
text (str): The input text containing HTTP links.
Returns:
str: The input text with HTTP links removed.
"""
try:
http = "https?://\S+|www\.\S+" # matching strings beginning with http (but not just "http")
pattern = r"({})".format(http) # creating pattern
return re.sub(pattern, "", text)
except Exception as e:
print(f"An error occurred during HTTP link removal: {e}")
return text
# Function to convert contractions in a text
def _convert_acronyms(self, text):
"""
Convert acronyms in the text.
Example of acronyms dictionary:
{"LOL": "laugh out loud", "BRB": "be right back", "IDK": "I don't know"}
Args:
text (str): The input text containing acronyms.
Returns:
str: The input text with acronyms expanded.
"""
try:
words = []
for word in self._regexp.tokenize(text):
if word in self._acronyms_list:
words = words + self._acronyms_dict[word].split()
else:
words = words + word.split()
text_converted = " ".join(words)
return text_converted
except Exception as e:
print(f"An error occurred during acronym conversion: {e}")
return text
# Function to convert contractions in a text
def _convert_contractions(self, text):
"""
Convert contractions in the text.
Example of contractions dictionary:
{"I'm": "I am", "he's": "he is", "won't": "will not"}
Args:
text (str): The input text containing contractions.
Returns:
str: The input text with contractions expanded.
"""
try:
words = []
for word in self._regexp.tokenize(text):
if word in self._contractions_list:
words = words + self._contractions_dict[word].split()
else:
words = words + word.split()
text_converted = " ".join(words)
return text_converted
except Exception as e:
print(f"An error occurred during contraction conversion: {e}")
return text
def _fix_letter_variations(self, query):
"""
Replace variations of letters with their original counterparts.
Args:
query (str): The input query containing variations of letters.
Returns:
str: The normalized query with variations replaced by their original counterparts.
"""
def replace_variation(match):
"""
Helper function to replace variations with original counterparts.
Args:
match (re.Match): The match object representing the found variation.
Returns:
str: The original character if match is not found in letter_variations, otherwise its original counterpart.
"""
for key in self._letter_variations.keys():
if match.group(0) in key:
return self._letter_variations[key]
return match.group(0)
try:
# Fixing the query
normalized_query = re.sub(self._pattern, replace_variation, query)
return normalized_query
except Exception as e:
print(f"An error occurred during letter variation fixing: {e}")
return query
def _normalize_query(self, word: str):
"""
Clean the input text by performing the following steps:
1. Remove non-alphabetic characters and keep specific characters like spaces, dashes, asterisks, and Arabic characters.
2. Remove non-alphabetic characters between alphabetic characters.
3. Remove repeating characters.
4. Remove preceding numbers (e.g. 123phone -> phone).
5. Add space between numbers and letters.
6. Remove extra spaces.
Args:
word (str): The input text to be cleaned.
Returns:
str: The cleaned text.
"""
try:
# Remove non-alphabetic characters and keep specific characters like spaces, dashes, asterisks, and Arabic characters
word = re.sub(
r"[^A-Za-z\s\-%*.$\u0621-\u064A0-9\u00E4\u00F6\u00FC\u00C4\u00D6\u00DC\u00df]",
"",
word,
flags=re.UNICODE,
)
# Remove non-alphabetic characters between alphabetic characters
clean_text = re.sub(
r"(?<=[a-zA-Z])([^A-Za-z\u0621-\u064A\s]+)(?=[a-zA-Z])", "", word
)
# Remove non-alphabetic characters between alphabetic characters
clean_text = re.sub(r"(?<=[a-zA-Z])([^A-Za-z\s]+)(?=[a-zA-Z])", "", clean_text)
# Remove non-alphabetic characters between Arabic characters
clean_text = re.sub(
r"(?<=[\u0621-\u064A])([^\u0621-\u064A\s]+)(?=[\u0621-\u064A])",
"",
clean_text,
)
# Remove repeating characters
clean_text = re.sub(r"(.)(\1+)", r"\1\1", clean_text)
# Remove preceding non latin alpha (e.g. صصphone -> phone)
clean_text = re.sub(r"([\u0621-\u064A]+)([a-zA-Z]+)", r"\2", clean_text)
# Add space between numbers and letters
clean_text = re.sub(r"([a-zA-Z]+)([\u0621-\u064A]+)", r"\1", clean_text)
# Remove preceding latin alpha (from arabic words) (e.g. phoneصص -> phone)
clean_text = re.sub(r"([a-zA-Z]+)([\u0621-\u064A]+)", r"\2", clean_text)
# Add space between numbers and letters
clean_text = re.sub(r"([\u0621-\u064A]+)([a-zA-Z]+)", r"\1", clean_text)
# Remove preceding numbers (e.g. 123phone -> phone)
clean_text = re.sub(r"(\d+)([a-zA-Z\u0621-\u064A]+)", r"\1 \2", clean_text)
# Add space between numbers and letters
clean_text = re.sub(r"([a-zA-Z\u0621-\u064A]+)(\d+)", r"\1 \2", clean_text)
# Remove extra spaces
clean_text = re.sub(r"\s+", " ", clean_text)
return clean_text.strip()
except Exception as e:
print(f"An error occurred during query normalization: {e}")
return word
def keep_one_char(self, word: str) -> str:
"""
Keep only one occurrence of consecutive repeated characters in the input word.
Args:
- word (str): The input word to modify.
Returns:
- str: The modified word with only one occurrence of consecutive repeated characters.
"""
try:
return re.sub(r"(.)(\1+)", r"\1", word)
except Exception as e:
print(f"An error occurred during character repetition removal: {e}")
return word
def translate_text(self, text: str) -> str:
"""
Translate the given text to English and return the translated text.
Args:
- text (str): The text to translate.
Returns:
- str: The translated text.
"""
try:
loop = asyncio.get_event_loop()
translated_text = (
loop.run_until_complete(self._translator.translate(text))
.text.lower()
.strip()
)
except Exception as e:
print(f"Text Translation failed: {e}")
translated_text = (
text.lower().strip()
) # Use original text if translation fails
return translated_text
def check_spelling(self, query: str) -> str:
"""
Check the spelling of the input query and return the corrected version.
Args:
- query (str): The input query to check its spelling.
Returns:
- str: The corrected query.
"""
try:
# Detect the language of the input query using Google Translate API
# input_language = self._translator.detect(query)
input_language = "en" if query.encode().isalpha() else "ar"
# Initialize SpellChecker with detected language, fallback to English if language detection fails
try:
spell_checker = SpellChecker(language=input_language)
except:
spell_checker = SpellChecker(language="en")
# Initialize an empty string to store the corrected query
result_query = ""
# Iterate through each word in the query
for word in query.split(" "):
# Get the corrected version of the word
corrected_word = spell_checker.correction(word)
# If the corrected word is not found, try correcting with keeping one character
if corrected_word is None:
corrected_word = spell_checker.correction(self.keep_one_char(word))
# If still not found, keep the original word
if corrected_word is None:
result_query += word + " "
else:
result_query += corrected_word + " "
else:
result_query += corrected_word + " "
# Remove trailing whitespace and return the corrected query
return result_query.strip()
except Exception as e:
print(f"An error occurred during spelling check: {e}")
return query
def clean_text(self, text):
"""
Normalize the input text.
Args:
text (str): The input text to be normalized.
Returns:
str: The normalized text.
"""
try:
# Convert text to lowercase
text = self._convert_to_lowercase(text)
# Remove whitespace
text = self._remove_whitespace(text)
# Convert text to one line
text = re.sub("\n", " ", text)
# Remove square brackets
text = re.sub("\[.*?\]", "", text)
# Remove HTTP links
text = self._remove_http(text)
# Remove HTML tags
text = self._remove_html(text)
# Remove emojis
text = self._remove_emoji(text)
# Fix letter variations
text = self._fix_letter_variations(text)
# Normalize queries
text = self._normalize_query(text)
return text
except Exception as e:
print(f"An error occurred during text cleaning: {e}")
return text
|