File size: 9,326 Bytes
aced155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee72580
aced155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e080d46
44e12e1
aced155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b420626
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
from huggingface_hub import InferenceClient
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
import os
import tempfile
from deep_translator import GoogleTranslator
import asyncio
import uuid
import logging
from tenacity import retry, stop_after_attempt, wait_exponential

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')


def initialize_session_state():
    if 'generated' not in st.session_state:
        st.session_state['generated'] = []
    if 'past' not in st.session_state:
        st.session_state['past'] = []
    if 'memory' not in st.session_state:
        st.session_state['memory'] = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    if 'vector_store' not in st.session_state:
        st.session_state['vector_store'] = None
    if 'embeddings' not in st.session_state:
        st.session_state['embeddings'] = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
                                                               model_kwargs={'device': 'cpu'}) # Can use CUDA if you want on your device
    if 'translation_states' not in st.session_state:
        st.session_state['translation_states'] = {}
    if 'message_ids' not in st.session_state:
        st.session_state['message_ids'] = []
    if 'is_loading' not in st.session_state:
        st.session_state['is_loading'] = False


async def process_pdf(file):
    with tempfile.NamedTemporaryFile(delete=False) as temp_file:
        temp_file.write(file.read())
        temp_file_path = temp_file.name

    loader = PyPDFLoader(temp_file_path)
    text = await asyncio.to_thread(loader.load)
    os.remove(temp_file_path)

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    text_chunks = await asyncio.to_thread(text_splitter.split_documents, text)
    return text_chunks


async def extract_text_from_pdfs(uploaded_files):
    tasks = [process_pdf(file) for file in uploaded_files]
    results = await asyncio.gather(*tasks)
    return [chunk for result in results for chunk in result]


@st.cache_data(show_spinner=False)
def translate_text(text, dest_language='ar'):
    translator = GoogleTranslator(source='auto', target=dest_language)
    translation = translator.translate(text)
    return translation


def update_vector_store(new_text_chunks):
    if st.session_state['vector_store']:
        st.session_state['vector_store'].add_documents(new_text_chunks)
    else:
        st.session_state['vector_store'] = FAISS.from_documents(new_text_chunks,
                                                                embedding=st.session_state['embeddings'])


@st.cache_resource
def get_hf_client():
    return InferenceClient(
        "mistralai/Mistral-Nemo-Instruct-2407",
        token="hf_********************************"
    )


def retrieve_relevant_chunks(query, max_tokens=1000):
    if st.session_state['vector_store']:
        search_results = st.session_state['vector_store'].similarity_search_with_score(query, k=5)
        relevant_chunks = []
        total_tokens = 0
        for doc, score in search_results:
            chunk_tokens = len(doc.page_content.split())
            if total_tokens + chunk_tokens > max_tokens:
                break
            relevant_chunks.append(doc.page_content)
            total_tokens += chunk_tokens
        return "\n".join(relevant_chunks) if relevant_chunks else None
    return None


@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def generate_response(query, conversation_context, relevant_chunk=None):
    client = get_hf_client()
    if relevant_chunk:
        full_query = f"Based on the following information:\n{relevant_chunk}\n\nAnswer the question: {query}"
    else:
        full_query = f"{conversation_context}\nUser: {query}"

    response = ""
    try:
        for message in client.chat_completion(
                messages=[{"role": "user", "content": full_query}],
                max_tokens=800,
                stream=True,
                temperature=0.3
        ):
            response += message.choices[0].delta.content
    except Exception as e:
        logging.error(f"Error generating response: {e}")
        raise

    return response.strip()


def display_chat_interface():
    for i in range(len(st.session_state['generated'])):
        with st.chat_message("user"):
            st.text(st.session_state["past"][i])

        with st.chat_message("assistant"):
            st.markdown(st.session_state['generated'][i])

            if i >= len(st.session_state['message_ids']):
                message_id = str(uuid.uuid4())
                st.session_state['message_ids'].append(message_id)
            else:
                message_id = st.session_state['message_ids'][i]

            translate_key = f"translate_{message_id}"

            if translate_key not in st.session_state['translation_states']:
                st.session_state['translation_states'][translate_key] = False

            if st.button(f"Translate to Arabic", key=f"btn_{translate_key}", on_click=toggle_translation,
                         args=(translate_key,)):
                pass

            if st.session_state['translation_states'][translate_key]:
                with st.spinner("Translating..."):
                    translated_text = translate_text(st.session_state['generated'][i])
                st.markdown(f"**Translated:** \n\n {translated_text}")


def toggle_translation(translate_key):
    st.session_state['translation_states'][translate_key] = not st.session_state['translation_states'][translate_key]


def get_conversation_context(max_tokens=2000):
    context = []
    total_tokens = 0
    for past, generated in zip(reversed(st.session_state['past']), reversed(st.session_state['generated'])):
        user_message = f"User: {past}\n"
        assistant_message = f"Assistant: {generated}\n"
        message_tokens = len(user_message.split()) + len(assistant_message.split())

        if total_tokens + message_tokens > max_tokens:
            break

        context.insert(0, user_message)
        context.insert(1, assistant_message)
        total_tokens += message_tokens

    return "".join(context)


def validate_input(user_input):
    if not user_input or not user_input.strip():
        return False, "Please enter a valid question or command."
    if len(user_input) > 500:
        return False, "Your input is too long. Please limit your question to 500 characters."
    return True, ""


def process_user_input(user_input):
    user_input = user_input.rstrip()

    is_valid, error_message = validate_input(user_input)
    if not is_valid:
        st.error(error_message)
        return

    st.session_state['past'].append(user_input)

    with st.chat_message("user"):
        st.text(user_input)

    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        message_placeholder.markdown("⏳ Thinking...")

        relevant_chunk = retrieve_relevant_chunks(user_input)
        conversation_context = get_conversation_context()

        try:
            output = generate_response(user_input, conversation_context, relevant_chunk)
        except Exception as e:
            logging.error(f"Failed to generate response after retries: {e}")
            output = "I apologize, but I'm having trouble processing your request at the moment. Please try again later."

        message_placeholder.empty()
        message_placeholder.markdown(output)
        st.session_state['generated'].append(output)
        st.session_state['memory'].save_context({"input": user_input}, {"output": output})

        message_id = str(uuid.uuid4())
        st.session_state['message_ids'].append(message_id)

        translate_key = f"translate_{message_id}"
        st.session_state['translation_states'][translate_key] = False

        if st.button(f"Translate to Arabic", key=f"btn_{translate_key}", on_click=toggle_translation,
                     args=(translate_key,)):
            pass

        if st.session_state['translation_states'][translate_key]:
            with st.spinner("Translating..."):
                translated_text = translate_text(output)
            st.markdown(f"**Translated:** \n\n {translated_text}")

    st.rerun()


def main():
    initialize_session_state()
    st.title("Chat with PDF Using Mistral AI")

    uploaded_files = st.sidebar.file_uploader("Upload your PDF files", type="pdf", accept_multiple_files=True)

    if uploaded_files:
        with st.spinner("Processing PDF files..."):
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            new_text_chunks = loop.run_until_complete(extract_text_from_pdfs(uploaded_files))
            update_vector_store(new_text_chunks)
        st.success("PDF files uploaded and processed successfully.")

    display_chat_interface()

    user_input = st.chat_input("Ask about your PDF(s)")
    if user_input:
        process_user_input(user_input)


if __name__ == "__main__":
    main()