File size: 3,537 Bytes
37717e6 cb8347a 37717e6 cb8347a e2a7f72 cb8347a 37717e6 cb8347a 37717e6 cb8347a 17ae05b cb8347a 37717e6 e2a7f72 37717e6 e2a7f72 37717e6 cb8347a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import os
import gradio as gr
import whisper
from gtts import gTTS
import io
import requests
from groq import Groq
import time
# Ensure GROQ_API_KEY and OpenWeather API key are defined
GROQ_API_KEY = "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"
OPENWEATHER_API_KEY = "aa4db8152e46c2f3fb19fad5d58a0ed8"
OPENWEATHER_URL = "https://api.openweathermap.org/data/2.5/weather"
if not GROQ_API_KEY:
raise ValueError("GROQ_API_KEY is not set in environment variables.")
if not OPENWEATHER_API_KEY:
raise ValueError("OPENWEATHER_API_KEY is not set in environment variables.")
# Initialize the Groq client
client = Groq(api_key=GROQ_API_KEY)
# Load the Whisper model
model = whisper.load_model("base") # Ensure this model supports Urdu; otherwise, choose a suitable model
def fetch_weather():
try:
response = requests.get(
OPENWEATHER_URL,
params={
'q': 'London', # Change to dynamic city name as needed
'appid': OPENWEATHER_API_KEY,
'units': 'metric'
}
)
response.raise_for_status()
weather_data = response.json()
temp = weather_data['main']['temp']
weather_description = weather_data['weather'][0]['description']
return f"Current temperature is {temp}°C with {weather_description}."
except Exception as e:
return f"Unable to fetch weather data: {e}"
def process_audio(file_path):
try:
# Load the audio file
audio = whisper.load_audio(file_path)
# Transcribe the audio using Whisper (specify language if needed)
result = model.transcribe(audio, language="ur") # Specify 'ur' for Urdu
text = result["text"]
# Check if the text contains any weather-related keywords
weather_keywords = ['weather', 'temperature', 'climate', 'forecast']
if any(keyword in text.lower() for keyword in weather_keywords):
weather_info = fetch_weather()
response_message = f"The weather update: {weather_info}"
else:
# Generate a response in Urdu using Groq
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": text}],
model="llama-3.1-70b-versatile", # Ensure this model can handle Urdu
)
# Access the response using dot notation
response_message = chat_completion.choices[0].message.content.strip()
# Convert the response text to Urdu speech
tts = gTTS(response_message, lang='ur') # Specify language 'ur' for Urdu
response_audio_io = io.BytesIO()
tts.write_to_fp(response_audio_io) # Save the audio to the BytesIO object
response_audio_io.seek(0)
# Generate a unique filename
response_audio_path = "response_" + str(int(time.time())) + ".mp3"
# Save audio to a file
with open(response_audio_path, "wb") as audio_file:
audio_file.write(response_audio_io.getvalue())
# Return the response text and the path to the saved audio file
return response_message, response_audio_path
except Exception as e:
return f"An error occurred: {e}", None
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"), # Use type="filepath"
outputs=[gr.Textbox(label="Response Text (Urdu)"), gr.Audio(label="Response Audio (Urdu)")],
live=True # Set to False if you do not need real-time updates
)
iface.launch()
|