Spaces:
Runtime error
Runtime error
File size: 4,878 Bytes
56ead55 c2261d4 56ead55 acae2bb 56ead55 acae2bb 56ead55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib
matplotlib.rcParams["figure.figsize"] = (20, 10)
path = 'bengaluru_house_prices.csv'
df = pd.read_csv(path)
df = df.drop(['area_type','society','balcony','availability'], axis = 'columns')
df=df.dropna()
df['BHK'] = df['size'].apply(lambda x: int(x.split(' ')[0]))
def isfloat(x):
token = x.split('-')
if len(token)==2:
return (float(token[0])+float(token[1]))/2
try:
return float(x)
except:
return None
df['total_sqft'] = df['total_sqft'].apply(isfloat)
df=df.drop(['size'], axis = 'columns')
df['price_per_sqft'] = df['price']*100000/df['total_sqft']
df.location = df.location.apply(lambda x: x.strip())
loc_stats = df.groupby('location')['location'].agg('count').sort_values(ascending = False)
len(loc_stats[loc_stats <= 10])
loc_stats_ten = loc_stats[loc_stats<=10]
df.location = df.location.apply(lambda x: 'other' if x in loc_stats_ten else x)
df = df[~(df.total_sqft/df.BHK < 300)]
def rem_out(df):
df_out = pd.DataFrame()
for key, subdf in df.groupby('location'):
mu = np.mean(subdf.price_per_sqft)
std = np.std(subdf.price_per_sqft)
dft = subdf[(subdf.price_per_sqft > (mu-std)) & (subdf.price_per_sqft <= (mu+std))]
df_out = pd.concat([df_out, dft], ignore_index = True)
return df_out
df = rem_out(df);
def remove_outlier(df):
exclude = np.array([])
for location, location_df in df.groupby('location'):
bhk_stat = {}
for BHK, bhk_df in location_df.groupby('BHK'):
bhk_stat[BHK] = {
'mean' : np.mean(bhk_df.price_per_sqft),
'std' : np.std(bhk_df.price_per_sqft),
'count' : bhk_df.shape[0]
}
# print(bhk_stat)
for BHK, bhk_df in location_df.groupby('BHK'):
stat = bhk_stat.get(BHK-1)
# print(stat)
if stat and stat['count']>5:
exclude = np.append(exclude, bhk_df[bhk_df.price_per_sqft<(stat['mean'])].index.values)
return df.drop(exclude, axis='index')
df = remove_outlier(df)
df = df[df.bath < df.BHK+2]
df = df.drop(['price_per_sqft'], axis = 'columns')
dummies = pd.get_dummies(df.location)
df = pd.concat([df, dummies.drop('other', axis = 'columns')], axis = 'columns')
df = df.drop('location', axis = 'columns')
x = df.drop('price', axis = 'columns')
y = df.price
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 10)
from sklearn.linear_model import LinearRegression
lr_clf = LinearRegression()
lr_clf.fit(X_train, y_train)
lr_clf.score(X_test, y_test)
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import cross_val_score
cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = 10)
cross_val_score(LinearRegression(), x, y, cv = cv)
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Lasso
from sklearn.tree import DecisionTreeRegressor
def find_best_model(x, y):
algos = {
'linear_reg' : {
'model' : LinearRegression(),
'params' : {
'fit_intercept': [True, False],
'copy_X': [True, False],
'n_jobs': [None, -1],
'positive': [True, False]
}
},
'lasso' : {
'model' : Lasso(),
'params' : {
'alpha' : [1,2],
'selection' : ['random', 'cyclic']
}
},
'dec_tree' : {
'model' : DecisionTreeRegressor(),
'params' : {
'criterion': ['friedman_mse', 'squared_error', 'poisson', 'absolute_error'],
'splitter': ['best', 'random'],
}
}
}
scores = []
cv = ShuffleSplit(n_splits = 5, test_size = 0.2, random_state = 10)
for algo_name, config in algos.items():
gs = GridSearchCV(config['model'], config['params'], cv = cv, return_train_score = False)
gs.fit(x,y);
scores.append({
'model' : algo_name,
'best_score' : gs.best_score_,
'best_params' : gs.best_params_
})
return pd.DataFrame(scores, columns = ['model', 'best_score', 'best_params'])
find_best_model(x,y)
def predict_price_func(location, sqft, bath, bhk):
loc_index = np.where(x.columns == location)[0][0]
xdash = np.zeros(len(x.columns))
xdash[0] = sqft
xdash[1] = bath
xdash[2] = bhk
if loc_index >= 0:
xdash[loc_index] = 1
return lr_clf.predict([xdash])[0]
import gradio as gr
from gradio.components import Textbox, Number
interface = gr.Interface(
fn=predict_price_func,
inputs=[
gr.inputs.Textbox(), # For location (text)
gr.inputs.Number(), # For area (numeric)
gr.inputs.Number(), # For bedrooms (numeric)
gr.inputs.Number() # For bathrooms (numeric)
],
outputs="text",
theme="huggingface"
)
interface.launch() |