Spaces:
Runtime error
Runtime error
File size: 10,357 Bytes
3310c6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
from typing import List, Callable
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.language_models import BaseChatModel
from langgraph.prebuilt import create_react_agent
from langchain_mcp_adapters.client import MultiServerMCPClient
import json
import os
import re
from contextlib import asynccontextmanager
def parse_mcp_config(mcp_config: dict, enabled_mcp_servers: list = None):
mcp_servers = {}
for server_name, server in mcp_config.get("mcpServers", {}).items():
if server.get("type") == "stdio" or not server.get("url") or (
enabled_mcp_servers is not None
and server_name not in enabled_mcp_servers):
continue
new_server = {**server}
# new_server["transport"] = server.get("type", "sse")
new_server["transport"] = "sse"
del new_server["type"]
if server.get("env"):
env = {'PYTHONUNBUFFERED': '1', 'PATH': os.environ.get('PATH', '')}
env.update(server["env"])
new_server["env"] = env
mcp_servers[server_name] = new_server
return mcp_servers
@asynccontextmanager
async def get_mcp_client(mcp_servers: dict):
async with MultiServerMCPClient(mcp_servers) as client:
yield client
async def get_mcp_prompts(mcp_config: dict, get_llm: Callable):
try:
mcp_servers = parse_mcp_config(mcp_config)
if len(mcp_servers.keys()) == 0:
return {}
llm: BaseChatModel = get_llm()
async with get_mcp_client(mcp_servers) as client:
mcp_tool_descriptions = {}
for mcp_name, server_tools in client.server_name_to_tools.items():
mcp_tool_descriptions[mcp_name] = {}
for tool in server_tools:
mcp_tool_descriptions[mcp_name][
tool.name] = tool.description
prompt = f"""Based on the following MCP service tool descriptions, generate 2-4 example user queries for each service:
Input structure explanation:
- mcp_tool_descriptions is a nested dictionary
- The first level keys are MCP service names (e.g., "service1", "service2")
- The second level contains descriptions of tools available within each service
MCP Service Tool Descriptions: {json.dumps(mcp_tool_descriptions)}
Please provide 2-4 natural and specific example queries in Chinese that effectively demonstrate the capabilities of each service.
The response must be in strict JSON format as shown below, with MCP service names as keys:
```json
{{
"mcp_name1": ["中文示例1", "中文示例2"],
"mcp_name2": ["中文示例1", "中文示例2"]
}}
```
Ensure:
1. Each example is specific to the functionality of that particular MCP service
2. Example queries are in natural Chinese expressions
3. Strictly use the top-level MCP service names as JSON keys
4. The returned format must be valid JSON
5. Each service MUST have exactly 2-4 example queries - not fewer than 2 and not more than 4
Return only the JSON object without any additional explanation or text."""
response = await llm.ainvoke(prompt)
if hasattr(response, 'content'):
content = response.content
else:
content = str(response)
json_match = re.search(r'\{.*\}', content, re.DOTALL)
if json_match:
json_content = json_match.group(0)
else:
json_content = content
raw_examples = json.loads(json_content)
for mcp_name in mcp_tool_descriptions.keys():
if mcp_name not in raw_examples:
raw_examples[mcp_name] = [
f"请使用 {mcp_name} 服务的功能帮我查询信息或解决问题",
]
return raw_examples
except Exception as e:
print('Prompt Error:', e)
return {
mcp_name: [
f"请使用 {mcp_name} 服务的功能帮我查询信息或解决问题",
]
for mcp_name in mcp_servers.keys()
}
def convert_mcp_name(tool_name: str, mcp_names: dict):
if not tool_name:
return tool_name
separators = tool_name.split("__TOOL__")
if len(separators) >= 2:
mcp_name_idx, mcp_tool_name = separators[:2]
else:
mcp_name_idx = separators[0]
mcp_tool_name = None
mcp_name = mcp_names.get(mcp_name_idx)
if not mcp_tool_name:
return mcp_name or mcp_name_idx
if not mcp_name:
return mcp_tool_name
return f"[{mcp_name}] {mcp_tool_name}"
async def generate_with_mcp(messages: List[dict], mcp_config: dict,
enabled_mcp_servers: list, sys_prompt: str,
get_llm: Callable):
mcp_servers = parse_mcp_config(mcp_config, enabled_mcp_servers)
async with get_mcp_client(mcp_servers) as client:
tools = []
mcp_tools = []
mcp_names = {}
for i, server_name_to_tool in enumerate(
client.server_name_to_tools.items()):
mcp_name, server_tools = server_name_to_tool
mcp_names[str(i)] = mcp_name
for tool in server_tools:
new_tool = tool.model_copy()
# tool match ^[a-zA-Z0-9_-]+$
new_tool.name = f"{i}__TOOL__{tool.name}"
mcp_tools.append(new_tool)
tools.extend(mcp_tools)
llm: BaseChatModel = get_llm()
tool_result_instruction = """When a tool returns responses containing URLs or links, please format them appropriately based on their CORRECT content type:
For example:
- Videos should use <video> tags
- Audio should use <audio> tags
- Images should use  or <img> tags
- Documents and web links should use [description](URL) format
Choose the appropriate display format based on the URL extension or content type information. This will provide the best user experience.
Remember that properly formatted media will enhance the user experience, especially when content is directly relevant to answering the query.
"""
attachment_instruction = """
The following instructions apply when user messages contain "Attachment links: [...]":
These links are user-uploaded attachments that contain important information for this conversation. These are temporary, secure links to files the user has specifically provided for analysis.
IMPORTANT INSTRUCTIONS:
1. These attachments should be your PRIMARY source of information when addressing the user's query.
2. Prioritize analyzing and referencing these documents BEFORE using any other knowledge.
3. If the content in these attachments is relevant to the user's request, base your response primarily on this information.
4. When you reference information from these attachments, clearly indicate which document it comes from.
5. If the attachments don't contain information needed to fully address the query, only then supplement with your general knowledge.
6. These links are temporary and secure, specifically provided for this conversation.
7. IMPORTANT: Do not use the presence of "Attachment links: [...]" as an indicator of the user's preferred language. This is an automatically added system text. Instead, determine the user's language from their actual query text.
Begin your analysis by examining these attachments first, and structure your thinking to prioritize insights from these documents.
"""
prompt = ChatPromptTemplate.from_messages([
("system", tool_result_instruction),
("system", sys_prompt),
("system", attachment_instruction),
MessagesPlaceholder(variable_name="messages"),
])
langchain_messages = []
for msg in messages:
if msg["role"] == "user":
langchain_messages.append(HumanMessage(content=msg["content"]))
elif msg["role"] == "assistant":
langchain_messages.append(AIMessage(content=msg["content"]))
agent_executor = create_react_agent(llm, tools, prompt=prompt)
use_tool = False
async for step in agent_executor.astream(
{"messages": langchain_messages},
config={"recursion_limit": 50},
stream_mode=["values", "messages"],
):
if isinstance(step, tuple):
if step[0] == "messages":
message_chunk = step[1][0]
if hasattr(message_chunk, "content"):
if isinstance(message_chunk, ToolMessage):
use_tool = False
yield {
"type":
"tool",
"name":
convert_mcp_name(message_chunk.name,
mcp_names),
"content":
message_chunk.content
}
elif hasattr(message_chunk,
'tool_call_chunks') and len(
message_chunk.tool_call_chunks) > 0:
for tool_call_chunk in message_chunk.tool_call_chunks:
yield {
"type":
"tool_call_chunks",
"name":
convert_mcp_name(tool_call_chunk["name"],
mcp_names),
"content":
tool_call_chunk["args"],
"next_tool":
bool(use_tool and tool_call_chunk["name"])
}
if tool_call_chunk["name"]:
use_tool = True
elif message_chunk.content:
yield {
"type": "content",
"content": message_chunk.content
}
|