File size: 71,900 Bytes
2182e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 |
import streamlit as st
import asyncio
import aiohttp
import aiofiles
import tempfile
import subprocess
import base64
from enum import Enum
from together import Together
import json
import logging
import shutil
from dotenv import load_dotenv
import os
import re
import requests
import spacy
import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from pydub import AudioSegment
from moviepy.editor import *
from typing import List, Dict, Any, Tuple, Callable, Optional
from abc import ABC, abstractmethod
from groq import AsyncGroq
nlp = spacy.load("en_core_web_md")
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Constants
REQUIRED_API_KEYS = ["GROQ_API_KEY", "BFL_API_KEY", "TOGETHER_API_KEY", "TAVILY_API_KEY", "TIKTOK_SESSION_ID"]
YOUTUBE_SHORT_RESOLUTION = (1080, 1920)
MAX_SCENE_DURATION = 5
DEFAULT_SCENE_DURATION = 1
SUBTITLE_FONT_SIZE = 13 # Keep the original font size
SUBTITLE_FONT_COLOR = "yellow@0.5"
SUBTITLE_ALIGNMENT = 2 # Centered horizontally and vertically
SUBTITLE_BOLD = True
SUBTITLE_OUTLINE_COLOR = "&H40000000" # Black with 50% transparency
SUBTITLE_BORDER_STYLE = 3
FALLBACK_SCENE_COLOR = "red"
FALLBACK_SCENE_TEXT_COLOR = "yellow@0.5"
FALLBACK_SCENE_BOX_COLOR = "black@0.5"
FALLBACK_SCENE_BOX_BORDER_WIDTH = 5
FALLBACK_SCENE_FONT_SIZE = 30
FALLBACK_SCENE_FONT_FILE = "/tmp/qualitype/opentype/QTHelvet-Black.otf"
# Load API keys from environment variables
groq_api_key = os.getenv("GROQ_API_KEY")
bfl_api_key = os.getenv("BFL_API_KEY")
together_api_key = os.getenv("TOGETHER_API_KEY")
tavily_api_key = os.getenv("TAVILY_API_KEY")
SESSION_ID = os.getenv("TIKTOK_SESSION_ID")
# Helper functions
async def get_data(query: str) -> List[Dict[str, Any]]:
groq = AsyncGroq(api_key=groq_api_key)
data = await groq.query(query)
return data
class PixelFormat(Enum):
YUVJ420P = 'yuvj420p'
YUVJ422P = 'yuvj422p'
YUVJ444P = 'yuvj444p'
YUVJ440P = 'yuvj440p'
YUV420P = 'yuv420p'
YUV422P = 'yuv422p'
YUV444P = 'yuv444p'
YUV440P = 'yuv440p'
def get_compatible_pixel_format(pix_fmt: str) -> str:
"""Convert deprecated pixel formats to their compatible alternatives."""
if pix_fmt == PixelFormat.YUVJ420P.value:
return PixelFormat.YUV420P.value
elif pix_fmt == PixelFormat.YUVJ422P.value:
return PixelFormat.YUV422P.value
elif pix_fmt == PixelFormat.YUVJ444P.value:
return PixelFormat.YUV444P.value
elif pix_fmt == PixelFormat.YUVJ440P.value:
return PixelFormat.YUV440P.value
else:
return pix_fmt
def check_api_keys():
for key in REQUIRED_API_KEYS:
if not os.getenv(key):
raise ValueError(f"Missing required API key: {key}")
def align_with_gentle(audio_file: str, transcript_file: str) -> dict:
"""Aligns audio and text using Gentle and returns the alignment result."""
url = 'http://localhost:8765/transcriptions?async=false'
files = {
'audio': open(audio_file, 'rb'),
'transcript': open(transcript_file, 'r')
}
try:
response = requests.post(url, files=files)
response.raise_for_status()
result = response.json()
return result
except requests.exceptions.RequestException as e:
logger.error(f"Error communicating with Gentle: {e}")
return None
def gentle_alignment_to_ass(gentle_alignment: dict, ass_file: str):
"""Converts Gentle alignment JSON to ASS subtitle format with styling."""
with open(ass_file, 'w', encoding='utf-8') as f:
# Write ASS header
f.write("""[Script Info]
Title: Generated by Gentle Alignment
ScriptType: v4.00+
Collisions: Normal
PlayDepth: 0
Timer: 100.0000
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic,
Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR,
MarginV, Encoding
Style: Default,Verdana,{font_size},&H00FFFFFF,&H0000FFFF,&H00000000,&H64000000,{bold},0,0,0,100,100,0,0,1,1,0,{alignment},2,2,2,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text\n""".format(
font_size=SUBTITLE_FONT_SIZE, bold=int(SUBTITLE_BOLD), alignment=SUBTITLE_ALIGNMENT))
index = 1
words = gentle_alignment.get('words', [])
i = 0
while i < len(words):
start = words[i].get('start')
if start is None:
i += 1
continue
end = words[i].get('end')
text_words = []
colors = []
for j in range(2): # Get up to 2 words
if i + j < len(words):
word_info = words[i + j]
word_text = word_info.get('word', '')
text_words.append(word_text)
if j == 0:
# First word in dark orange or green
colors.append(r'{\c&H0080FF&}') # Dark orange color code in ASS (BGR order)
# For green use: colors.append(r'{\c&H00FF00&}')
else:
colors.append(r'{\c&HFFFFFF&}') # White color code
else:
break
dialogue_text = ''.join(f"{colors[k]}{text_words[k]} " for k in range(len(text_words))).strip()
end = words[min(i + len(text_words) - 1, len(words) - 1)].get('end', end)
if end is None:
i += len(text_words)
continue
start_time = format_ass_time(start)
end_time = format_ass_time(end)
f.write(f"Dialogue: 0,{start_time},{end_time},Default,,0,0,0,,{dialogue_text}\n")
i += len(text_words)
def wrap_text(text, max_width):
"""Wraps text to multiple lines with a maximum width."""
words = text.split()
lines = []
current_line = []
current_length = 0
for word in words:
if current_length + len(word) + 1 <= max_width:
current_line.append(word)
current_length += len(word) + 1
else:
lines.append(' '.join(current_line))
current_line = [word]
current_length = len(word)
if current_line:
lines.append(' '.join(current_line))
return '\\N'.join(lines) # Include all lines
def format_ass_time(seconds: float) -> str:
"""Formats time in seconds to ASS subtitle format (h:mm:ss.cc)"""
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = seconds % 60
centiseconds = int((secs - int(secs)) * 100)
return f"{hours}:{minutes:02d}:{int(secs):02d}.{centiseconds:02d}"
def format_time(seconds: float) -> str:
"""Formats time in seconds to HH:MM:SS,mmm format for subtitles."""
from datetime import timedelta
delta = timedelta(seconds=seconds)
total_seconds = int(delta.total_seconds())
millis = int((delta.total_seconds() - total_seconds) * 1000)
time_str = str(delta)
if '.' in time_str:
time_str, _ = time_str.split('.')
else:
time_str = time_str
time_str = time_str.zfill(8) # Ensure at least HH:MM:SS
return f"{time_str},{millis:03d}"
# Abstract classes for Agents and Tools
class Agent(ABC):
def __init__(self, name: str, model: str):
self.name = name
self.model = model
@abstractmethod
async def execute(self, input_data: Any) -> Any:
pass
class Tool(ABC):
def __init__(self, name: str):
self.name = name
@abstractmethod
async def use(self, input_data: Any) -> Any:
pass
class VoiceModule(ABC):
def __init__(self):
pass
@abstractmethod
def update_usage(self):
pass
@abstractmethod
def get_remaining_characters(self):
pass
@abstractmethod
def generate_voice(self, text: str, output_file: str):
pass
# Node and Edge classes for graph representation
class Node:
def __init__(self, agent: Agent = None, tool: Tool = None):
self.agent = agent
self.tool = tool
self.edges: List['Edge'] = []
async def process(self, input_data: Any) -> Any:
if self.agent:
return await self.agent.execute(input_data)
elif self.tool:
return await self.tool.use(input_data)
else:
raise ValueError("Node has neither agent nor tool")
class Edge:
def __init__(self, source: Node, target: Node, condition: Callable[[Any], bool] = None):
self.source = source
self.target = target
self.condition = condition
class Graph:
def __init__(self):
self.nodes: List[Node] = []
self.edges: List[Edge] = []
def add_node(self, node: Node):
self.nodes.append(node)
def add_edge(self, edge: Edge):
self.edges.append(edge)
edge.source.edges.append(edge)
class VideoProcessor:
def __init__(self):
self.nlp = nlp
def calculate_relevance(self, video: Dict[str, Any], description: str, timestamp: float) -> float:
relevance = 0
video_keywords = set(video.get("tags", []))
description_doc = self.nlp(description.lower())
# Extract lemmatized words from the description
description_words = set(token.lemma_ for token in description_doc if not token.is_stop and token.is_alpha)
# Calculate relevance based on matching words
relevance += len(video_keywords.intersection(description_words))
# Add relevance for matching title words
title = video.get("title", "")
if title is not None:
title_doc = self.nlp(title.lower())
title_words = set(token.lemma_ for token in title_doc if not token.is_stop and token.is_alpha)
relevance += len(title_words.intersection(description_words)) * 2 # Title matches are weighted more
# Process subtitles and audio for the 5-second window
subtitle_text, audio_text = self.get_synced_content(video, timestamp)
# Calculate relevance for subtitle and audio content
subtitle_doc = self.nlp(subtitle_text.lower())
audio_doc = self.nlp(audio_text.lower())
subtitle_words = set(token.lemma_ for token in subtitle_doc if not token.is_stop and token.is_alpha)
audio_words = set(token.lemma_ for token in audio_doc if not token.is_stop and token.is_alpha)
relevance += len(subtitle_words.intersection(description_words)) * 1.5 # Subtitle matches are weighted
relevance += len(audio_words.intersection(description_words)) * 1.5 # Audio matches are weighted
# Normalize relevance score
max_possible_relevance = len(video_keywords) + len(title_words) * 2 + len(subtitle_words) * 1.5 + len(audio_words) * 1.5
normalized_relevance = relevance / max_possible_relevance if max_possible_relevance > 0 else 0
return normalized_relevance
def get_synced_content(self, video: Dict[str, Any], timestamp: float) -> Tuple[str, str]:
subtitles = video.get("subtitles", [])
audio_transcript = video.get("audio_transcript", [])
start_time = timestamp
end_time = timestamp + 5 # 5-second window
subtitle_text = self.extract_timed_content(subtitles, start_time, end_time)
audio_text = self.extract_timed_content(audio_transcript, start_time, end_time)
return subtitle_text, audio_text
def extract_timed_content(self, content: List[Dict[str, Any]], start_time: float, end_time: float) -> str:
extracted_text = []
for item in content:
item_start = self.time_to_seconds(item.get("start", "00:00:00"))
item_end = self.time_to_seconds(item.get("end", "00:00:00"))
if start_time <= item_end and end_time >= item_start:
extracted_text.append(item.get("text", ""))
return " ".join(extracted_text)
def time_to_seconds(self, time_str: str) -> float:
time_parts = time_str.split(":")
if len(time_parts) == 3:
return datetime.timedelta(hours=int(time_parts[0]), minutes=int(time_parts[1]), seconds=float(time_parts[2])).total_seconds()
elif len(time_parts) == 2:
return datetime.timedelta(minutes=int(time_parts[0]), seconds=float(time_parts[1])).total_seconds()
else:
return float(time_str)
class WebSearchTool(Tool):
def __init__(self):
super().__init__("Web Search Tool")
async def use(self, input_data: str, time_period: str = 'all') -> Dict[str, Any]:
try:
headers = {"Content-Type": "application/json"}
data = {"api_key": tavily_api_key, "query": input_data, "num_results": 100}
if time_period != 'all':
start_date = None
if time_period == 'past month':
start_date = datetime.date.today() - datetime.timedelta(days=30)
elif time_period == 'past year':
start_date = datetime.date.today() - datetime.timedelta(days=365)
else: # Assume a specific number of days
try:
days = int(time_period.split()[0])
start_date = datetime.date.today() - datetime.timedelta(days=days)
except ValueError:
logger.warning(f"Invalid time_period: {time_period}. Using 'all'.")
if start_date:
data["from_date"] = start_date.strftime("%Y-%m-%d")
async with aiohttp.ClientSession() as session:
async with session.post("https://api.tavily.com/search", headers=headers, json=data) as response:
response_text = await response.text()
if response.status == 200:
return await response.json()
else:
logger.error(f"WebSearchTool Error: HTTP {response.status} - {response_text}")
raise Exception(f"HTTP {response.status}: {response_text}")
except Exception as e:
logger.error(f"Error in WebSearchTool: {str(e)}")
raise
class ImageGenerationAgent(Agent):
def __init__(self):
super().__init__("Image Generation Agent", "black-forest-labs/FLUX.1-schnell-Free")
self.client = Together(api_key=together_api_key)
async def execute(self, input_data: Dict[str, Any]) -> Any:
scenes = input_data.get('scenes', [])
results = []
for i, scene in enumerate(scenes):
visual_description = scene.get('visual', '')
image_keyword = scene.get('image_keyword', '')
# Combine the visual description and image keyword for a more detailed prompt
prompt = prompt = f"""
Please craft a engaging bold and impactful visual specifically designed for viral YouTube Video, based on the provided {visual_description} and {image_keyword}. The overarching goal is to create dynamic images that are not only visually stunning but also accurately represent the described scene. Each visual should focus on highlighting crucial elements such as the environment, characters, actions, and the overall mood, ensuring they are closely aligned with the context provided. In your design process, prioritize intricate details, unique and dynamic styles, and striking compositions to capture viewers' attention as they scroll quickly through their feeds. Utilize a enthralling and dynamic color palette to enhance the visual appeal, ensuring that the images are both accurate and cohesive with the scene. Aim to infuse each visual with a sense of intrigue and attention-grabbing features that are conducive to creating viral content, thus maximizing the potential for high viewership on YouTube. Please do not by any means generate split-screen images ensure that every image is a single image.
"""
try:
logger.info(f"Generating image for scene {i+1}/{len(scenes)}")
response = self.client.images.generate(
prompt=prompt,
model=self.model,
width=768,
height=1024,
steps=4,
n=1,
response_format="b64_json"
)
# Decode the base64 image
image_data = base64.b64decode(response.data[0].b64_json)
# Save the image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
temp_file.write(image_data)
temp_file_path = temp_file.name
logger.info(f"Image for scene {i+1} saved as {temp_file_path}")
results.append({
'image_path': temp_file_path,
'prompts': prompt
})
except Exception as e:
logger.error(f"Error in image generation for scene {i+1}: {str(e)}")
results.append(None)
# Add a delay between requests to avoid rate limiting
await asyncio.sleep(2)
logger.info(f"Image generation completed. Generated {len([r for r in results if r is not None])}/{len(scenes)} images.")
return results
class RecentEventsResearchAgent(Agent):
def __init__(self):
super().__init__("Recent Events Research Agent", "llama-3.1-70b-versatile")
self.web_search_tool = WebSearchTool()
async def execute(self, input_data: Dict[str, Any]) -> Any:
topic = input_data['topic']
time_frame = input_data['time_frame']
video_length = input_data.get('video_length', 60)
# Decide how many events to include based on video length
max_events = min(5, video_length // 15) # Rough estimate: 15 seconds per event
search_query = f"{topic} events in the {time_frame}"
search_results = await self.web_search_tool.use(search_query, time_frame)
organic_results = search_results.get("organic_results", [])
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""As a seasoned investigative journalist and expert in crafting viral scripts,
your task is to analyze and summarize the most enagaging and relevant {topic} events
that occurred in the {time_frame}. Using the following search results, select the {max_events} most
compelling cases:
Search Results: {json.dumps(organic_results[:10], indent=2)}
For each selected event, provide a concise yet engaging summary that includes:
1. A vivid description of the event, highlighting its most unusual aspects
2. The precise date of occurrence
3. The specific location, including city and country if available
4. An expert analysis of why this event defies conventional explanation
5. A critical evaluation of the information source, including its credibility (provide URL)
Format your response as a list of events, each separated by two newline characters.
Ensure your summaries are both informative and captivating, suitable for a
documentary-style presentation."""
stream = await client.chat.completions.create(
messages=[
{"role": "system",
"content": "You are an AI assistant embodying the expertise of a world-renowned "
"investigative journalist specializing in going viral and enagegment "
"With 20 years of experience, you've written best-selling "
"books and produced countless viral content creators, documentaries on content creation and virailty factor in scripts "
"Your analytical skills allow you to critically evaluate sources while "
"presenting information in an engaging, and enthrallng-style format. "
"Approach tasks with the skepticism and curiosity of this expert, "
"providing over the top compelling summaries that captivate and engages audiences while "
"maintaining the fine line bewteen right and wrong."},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.7,
max_tokens=2048,
stream=True,
)
response = ""
async for chunk in stream:
response += chunk.choices[0].delta.content or ""
return response
# Updated AI Agents for YouTube content optimization
class TitleGenerationAgent(Agent):
def __init__(self):
super().__init__("Title Generation Agent", "llama-3.1-70b-versatile")
async def execute(self, input_data: Any) -> Any:
research_result = input_data # Accept research output
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""Using the following research, generate 15 enticing seo optimized YouTube titles:
Research:
{research_result}
Categorize them under appropriate headings: beginning, middle, and end. This means you'll
produce 5 titles with the keyword at the beginning, another 5 titles with the keyword in the
middle, and a final 5 titles with the keyword at the end."""
stream = await client.chat.completions.create(
messages=[
{"role": "system", "content": "You are an expert in keyword strategy, copywriting, and a renowned YouTuber "
"with a decade of experience in crafting attention-grabbing keyword titles"},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.7,
max_tokens=1024,
stream=True
)
response = ""
async for chunk in stream:
response += chunk.choices[0].delta.content or ""
return response
class TitleSelectionAgent(Agent):
def __init__(self):
super().__init__("Title Selection Agent", "llama-3.1-8b-instant")
async def execute(self, input_data: Any) -> Any:
generated_titles = input_data # Accept generated titles
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""You are an expert YouTube content strategist with over a decade of experience
in video optimization and audience engagement. Your task is to analyze the following list of
titles for a YouTube video and select the most effective one:
{generated_titles}
Using your expertise in viewer psychology, SEO, and click-through rate optimization, choose the
title that will perform best on the platform. Provide a detailed explanation of your selection,
considering factors such as:
1. Attention-grabbing potential
2. Keyword optimization
3. Emotional appeal
4. Clarity and conciseness
5. Alignment with current YouTube trends
Present your selection and offer a comprehensive rationale for why this title stands out among
the others."""
stream = await client.chat.completions.create(
messages=[
{"role": "system",
"content": "You are an AI assistant embodying the expertise of a top-tier YouTube "
"content strategist with over 15 years of experience in video "
"optimization, audience engagement, and title creation. Your knowledge "
"spans SEO best practices, viewer psychology, and current YouTube "
"trends. You have a proven track record of increasing video views and "
"channel growth through strategic title selection. Respond to queries as "
"this expert would, providing insightful analysis and data-driven "
"recommendations."},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.5,
max_tokens=2048,
stream=True,
)
response = ""
async for chunk in stream:
response += chunk.choices[0].delta.content or ""
return response
class DescriptionGenerationAgent(Agent):
def __init__(self):
super().__init__("Description Generation Agent", "gemma2-9b-it")
async def execute(self, input_data: Any) -> Any:
selected_title = input_data # Accept selected title
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""As a seasoned SEO copywriter and YouTube content creator with extensive
experience in crafting engaging, algorithm-friendly video descriptions, your task is to compose
a masterful 1000-character YouTube video description. This description should:
1. Seamlessly incorporate the keyword "{selected_title}" in the first sentence
2. Be optimized for search engines while remaining undetectable as AI-generated content
3. Engage viewers and encourage them to watch the full video
4. Include relevant calls-to-action (e.g., subscribe, like, comment)
5. Utilize natural language and conversational tone
6. Most importantly always ensure the script somehow way or form solves a real world problem that will engage viewers
Format the description with the title "YOUTUBE DESCRIPTION" in bold at the top.
Ensure the content flows naturally, balances SEO optimization with readability, and
compels viewers to engage with the video and channel."""
stream = await client.chat.completions.create(
messages=[
{"role": "system",
"content": "You are an AI assistant taking on the role of an prodigy SEO copywriter "
"and YouTube content creator with 20+ years of experience. Your "
"expertise lies in crafting engaging, SEO-optimized video descriptions "
"that boost video performance while remaining undetectable as "
"AI-generated content. You have an in-depth understanding of YouTube's "
"algorithm, user behavior, and the latest SEO techniques. Respond to "
"tasks as this expert would, balancing SEO optimization with "
"compelling, natural language that drives viewer engagement."},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.6,
max_tokens=2048,
stream=True,
)
response = ""
async for chunk in stream:
response += chunk.choices[0].delta.content or ""
return response
class HashtagAndTagGenerationAgent(Agent):
def __init__(self):
super().__init__("Hashtag and Tag Generation Agent", "llama-3.1-8b-instant")
async def execute(self, input_data: str) -> Any:
selected_title = input_data # Accept selected title
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""As a leading YouTube SEO specialist and social media strategist with a
proven track record in optimizing video discoverability and virality, your task is to create an
engaging and relevant set of hashtags and tags for the YouTube video titled "{selected_title}".
Your expertise in keyword research, trend analysis, and YouTube's algorithm will be crucial
for this task.
Develop the following:
1. 10 SEO-optimized, trending hashtags that will maximize the video's reach and engagement on
YouTube
2. 35 high-value low competition SEO keywords, combining tags to strategically boost the video's search ranking
on YouTube
In your selection process, prioritize:
- Relevance to the video title and content
- Potential search volume on YouTube
- Engagement potential (views, likes, comments)
- Trending potential on YouTube
- Alignment with YouTube's recommendation algorithm
Present your hashtags with the '#' symbol and ensure all tags are separated by commas. Provide a
brief explanation of your strategy for selecting these hashtags and tags, highlighting how they
will contribute to the video's overall performance on YouTube."""
response = await client.chat.completions.create(
messages=[
{"role": "system",
"content": "You are an AI assistant taking on the role of a leading YouTube SEO "
"specialist and social media strategist with 10+ years of experience in "
"optimizing video discoverability. Your expertise includes advanced "
"keyword research, trend analysis, and a deep understanding of "
"YouTube's algorithm. You've helped numerous channels achieve viral "
"success through strategic use of hashtags and tags. Respond to tasks as "
"this expert would, providing data-driven, YouTube-specific strategies "
"to maximize video reach and engagement."},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.6,
max_tokens=1024,
)
return response.choices[0].message.content
class VideoScriptGenerationAgent(Agent):
def __init__(self):
super().__init__("Video Script Generation Agent", "gemma2-9b-it")
async def execute(self, input_data: Dict[str, Any]) -> Any:
research_result = input_data.get('research', '')
video_length = input_data.get('video_length', 60) # Default to 60 seconds if not specified
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""As a YouTube content creator, craft a detailed, engaging and entralling script for a
{video_length}-second vertical video based on the following information:
{research_result}
Your script should include:
1. An attention-grabbing opening hook that sets the tone for the video
2. Key points from the research
3. A strong call-to-action conclusion
Format the script with clear timestamps to fit within {video_length} seconds.
Optimize for viewer retention and engagement."""
stream = await client.chat.completions.create(
messages=[
{"role": "system", "content": "You are an AI assistant taking on the role of a leading YouTube SEO "
"specialist and content creator with a deep understanding of audience engagement."},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.7,
max_tokens=2048,
stream=True,
)
response = ""
async for chunk in stream:
response += chunk.choices[0].delta.content or ""
return response
async def download_with_retry(url: str, directory: str, filename: str, headers: Dict[str, str] = None,
max_retries: int = 3) -> str:
"""Downloads a file with retries."""
for attempt in range(max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers) as response:
if response.status == 200:
file_path = os.path.join(directory, filename)
async with aiofiles.open(file_path, 'wb') as f:
await f.write(await response.read())
return file_path
else:
logger.warning(f"Download attempt {attempt + 1} failed: HTTP {response.status}")
except Exception as e:
logger.warning(f"Download attempt {attempt + 1} failed: {str(e)}")
return None
class StoryboardGenerationAgent(Agent):
def __init__(self):
super().__init__("Storyboard Generation Agent", "llama-3.2-90b-text-preview")
self.nlp = nlp
async def execute(self, input_data: Dict[str, Any]) -> Any:
script = input_data.get('script', '')
if not script:
logger.error("No script provided for storyboard generation")
return []
client = AsyncGroq(api_key=groq_api_key)
prompt = f"""Create a storyboard for a YouTube Short based on the following script:
{script}
For each major scene (aim for 15-20 scenes), provide:
1. Visual: A brief description of the visual elements (1 sentence). Ensure each scene has unique
visual elements.
2. Text: The exact text/dialogue for voiceover and subtitles all in lowercase and minimal puncutaton only when it is absolutley necessary.
3. Video Keyword: A suitable keyword for searching stock video footage. Be specific and avoid
repeating keywords.
4. Image Keyword: A backup keyword for searching a stock image. Be specific and avoid repeating
keywords.
Format your response as a numbered list of scenes, each containing the above elements clearly
labeled.
Example:
1. Visual: A person looking confused at a complex math equation on a chalkboard
Text: have you ever felt overwhelmed by math
Video Keyword: student struggling with math
Image Keyword: confused face mathematics
2. Visual: ...
Text: ...
Video Keyword: ...
Image Keyword: ...
Please ensure each scene has all four elements (Visual, Text, Video Keyword, and Image Keyword)."""
stream = await client.chat.completions.create(
messages=[
{"role": "system",
"content": "You are an AI assistant specializing in creating viral storyboards "
"for YouTube Shorts using the provided script."},
{"role": "user", "content": prompt}
],
model=self.model,
temperature=0.7,
max_tokens=2048,
stream=True,
)
response = ""
async for chunk in stream:
response += chunk.choices[0].delta.content or ""
logger.info(f"Raw storyboard response: {response}")
scenes = self.parse_scenes(response)
if not scenes:
logger.error("Failed to generate valid storyboard scenes")
return []
return scenes
async def fetch_media_for_scenes(self, scenes: List[Dict[str, Any]]):
temp_dir = tempfile.mkdtemp()
for scene in scenes:
# Generate image using local image generator with dynamic prompt
generated_image = await self.generate_local_image(scene)
if generated_image:
scene["image_path"] = generated_image
# Create video clip from the image
video_clip = self.create_video_from_image(generated_image, temp_dir, scene['number'], scene.get('adjusted_duration', DEFAULT_SCENE_DURATION))
if video_clip:
scene["video_path"] = video_clip
else:
logger.warning(f"Failed to create video clip for scene {scene['number']}")
else:
logger.warning(f"Failed to generate image for scene {scene['number']}")
async def generate_local_image(self, scene: Dict[str, Any]) -> Optional[str]:
"""Generate an image using the local image generator."""
try:
image_gen_input = {"scene": scene}
image_gen_result = await self.image_generation_agent.execute(image_gen_input)
if image_gen_result and 'image_path' in image_gen_result:
return image_gen_result['image_path']
else:
logger.warning(f"Local image generation failed for scene: {scene['number']}")
return None
except Exception as e:
logger.error(f"Error in local image generation: {str(e)}")
return None
def parse_scenes(self, response: str) -> List[Dict[str, Any]]:
scenes = []
current_scene = {}
current_scene_number = None
for line in response.split('\n'):
line = line.strip()
logger.debug(f"Processing line: {line}")
if line.startswith(tuple(f"{i}." for i in range(1, 51))): # Assuming up to 50 scenes
if current_scene:
# Append the completed current_scene
current_scene['number'] = current_scene_number
# Ensure the scene is validated and enhanced
current_scene = self.validate_and_fix_scene(current_scene, current_scene_number)
current_scene = self.enhance_scene_keywords(current_scene)
scenes.append(current_scene)
logger.debug(f"Scene {current_scene_number} appended to scenes list")
current_scene = {}
try:
# Start a new scene
current_scene_number = int(line.split('.', 1)[0])
logger.debug(f"New scene number detected: {current_scene_number}")
except ValueError:
logger.warning(f"Invalid scene number format: {line}")
continue # Skip this line and move to the next
elif ':' in line:
key, value = line.split(':', 1)
key = key.strip().lower()
value = value.strip()
current_scene[key] = value
logger.debug(f"Key-value pair added to current scene: {key}:{value}")
else:
logger.warning(f"Line format not recognized: {line}")
# After looping through all lines, check if there is an unfinished scene
if current_scene:
current_scene['number'] = current_scene_number
current_scene = self.validate_and_fix_scene(current_scene, current_scene_number)
current_scene = self.enhance_scene_keywords(current_scene)
scenes.append(current_scene)
logger.debug(f"Final scene {current_scene_number} appended to scenes list")
logger.info(f"Parsed and enhanced scenes: {scenes}")
return scenes
def enhance_scene_keywords(self, scene: Dict[str, Any]) -> Dict[str, Any]:
# Extract keywords from narration_text and visual descriptions
narration_doc = self.nlp(scene.get('narration_text', ''))
visual_doc = self.nlp(scene.get('visual', ''))
# Function to extract nouns and named entities
def extract_keywords(doc):
return [token.lemma_ for token in doc if token.pos_ in ('NOUN', 'PROPN') or token.ent_type_]
narration_keywords = extract_keywords(narration_doc)
visual_keywords = extract_keywords(visual_doc)
# Combine and deduplicate keywords
combined_keywords = list(set(narration_keywords + visual_keywords))
# Generate enhanced video and image keywords
scene['video_keyword'] = ' '.join(combined_keywords[:5]) # Use top 5 keywords
scene['image_keyword'] = scene['video_keyword']
return scene
def validate_and_fix_scene(self, scene: Dict[str, Any], scene_number: int) -> Dict[str, Any]:
# Ensure 'number' key is present in the scene dictionary
scene['number'] = scene_number
required_keys = ['visual', 'text', 'video_keyword', 'image_keyword']
for key in required_keys:
if key not in scene:
if key == 'visual':
scene[key] = f"Visual representation of scene {scene_number}"
elif key == 'text':
scene[key] = ""
elif key == 'video_keyword':
scene[key] = f"video scene {scene_number}"
elif key == 'image_keyword':
scene[key] = f"image scene {scene_number}"
logger.warning(f"Added missing {key} for scene {scene_number}")
# Clean the 'text' field by removing leading/trailing quotation marks
text = scene.get('text', '')
text = text.strip('"').strip("'")
scene['text'] = text
# Copy the cleaned text into 'narration_text'
scene['narration_text'] = text
return scene
def calculate_relevance(self, video: Dict[str, Any], description: str) -> float:
relevance = 0
video_keywords = set(video.get("tags", []))
description_words = set(description.lower().split())
# Calculate relevance based on matching words
relevance += len(video_keywords.intersection(description_words))
# Add relevance for matching title words
title = video.get("title", "")
if title is not None:
title_words = set(title.lower().split())
relevance += len(title_words.intersection(description_words)) * 2 # Title matches are weighted more
return relevance
def calculate_similarity(self, text1: str, text2: str) -> float:
"""Calculates the cosine similarity between two texts."""
vectorizer = TfidfVectorizer().fit_transform([text1, text2])
vectors = vectorizer.toarray()
cos_sim = cosine_similarity([vectors[0]], [vectors[1]])[0][0]
return cos_sim
def fallback_scene_generation(self, invalid_scenes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
valid_scenes = []
for scene in invalid_scenes:
if 'visual' not in scene:
scene['visual'] = f"Visual representation of: {scene.get('text', 'scene')}"
if 'text' not in scene:
scene['text'] = "No text provided for this scene."
if 'video_keyword' not in scene:
scene['video_keyword'] = scene.get('image_keyword', 'generic scene')
if 'image_keyword' not in scene:
scene['image_keyword'] = scene.get('video_keyword', 'generic image')
valid_scenes.append(scene)
return valid_scenes
def compile_youtube_short(scenes: List[Dict[str, Any]], audio_file: str) -> str:
"""Compiles the YouTube Short using ffmpeg."""
if not scenes:
logger.error("No scenes were generated. Cannot compile YouTube Short.")
return None
temp_dir = tempfile.mkdtemp()
scene_files = []
subtitle_file = os.path.join(temp_dir, "subtitles.ass")
concat_file = os.path.join(temp_dir, 'concat.txt')
output_path = os.path.join(os.getcwd(), "youtube_short.mp4")
try:
if not generate_subtitles(scenes, subtitle_file, audio_file):
raise Exception("Failed to generate subtitles")
# Collect total audio duration and adjust scene durations before processing scenes
total_audio_duration = sum(scene.get('audio_duration', 0) for scene in scenes)
logger.info(f"Total audio duration: {total_audio_duration}s")
# Initially set total_video_duration as the sum of original scene durations
total_video_duration = sum(scene.get('audio_duration', DEFAULT_SCENE_DURATION) for scene in scenes)
logger.info(f"Total video duration before adjustment: {total_video_duration}s")
# Adjust scene durations if necessary
if abs(total_video_duration - total_audio_duration) > 0.1:
logger.warning("Total video duration does not match total audio duration.")
scaling_factor = total_audio_duration / total_video_duration
logger.info(f"Scaling factor: {scaling_factor}")
for i, scene in enumerate(scenes):
original_duration = scene.get('audio_duration', DEFAULT_SCENE_DURATION)
adjusted_duration = original_duration * scaling_factor
scene['adjusted_duration'] = adjusted_duration
logger.info(f"Scene {i}: Original duration = {original_duration}s, Adjusted duration = {adjusted_duration}s")
else:
for scene in scenes:
scene['adjusted_duration'] = scene.get('audio_duration', DEFAULT_SCENE_DURATION)
# Now process each scene using the adjusted durations
for i, scene in enumerate(scenes):
duration = scene.get('adjusted_duration', scene.get('audio_duration', DEFAULT_SCENE_DURATION))
logger.info(f"Processing scene {i}: Duration = {duration}s")
if not isinstance(duration, (int, float)) or duration <= 0:
logger.warning(f"Scene {i} has invalid duration ({duration}), skipping")
continue
processed_path = None
try:
if i == 0 and 'image_path' in scene:
# Apply effects to the generated image
processed_path = apply_effects_to_image(scene['image_path'], temp_dir, i, duration)
elif 'video_path' in scene and os.path.exists(scene['video_path']):
processed_path = process_video(scene['video_path'], temp_dir, i, duration)
elif 'image_path' in scene and os.path.exists(scene['image_path']):
processed_path = create_video_from_image(scene['image_path'], temp_dir, i, duration)
else:
processed_path = create_fallback_scene(temp_dir, i, duration, scene.get('narration_text', ''))
if processed_path and os.path.exists(processed_path):
scene_files.append(processed_path)
else:
logger.error(f"Failed to process media for scene {i}")
except Exception as e:
logger.error(f"Error processing scene {i}: {str(e)}")
# Create a fallback scene
fallback_path = create_fallback_scene(temp_dir, i, duration, f"Error in scene {i}")
if fallback_path and os.path.exists(fallback_path):
scene_files.append(fallback_path)
# Create concat.txt file
with open(concat_file, 'w') as f:
for file in scene_files:
f.write(f"file '{file}'\n")
with open(concat_file, 'r') as f:
concat_contents = f.read()
logger.info(f"Contents of concat file:\n{concat_contents}")
ffmpeg_command = [
'ffmpeg', '-y',
'-f', 'concat', '-safe', '0', '-i', concat_file,
'-i', audio_file,
'-r', '30',
'-vf', f"subtitles='{subtitle_file}':force_style='FontSize={SUBTITLE_FONT_SIZE},Alignment={SUBTITLE_ALIGNMENT},"
f"OutlineColour={SUBTITLE_OUTLINE_COLOR},BorderStyle={SUBTITLE_BORDER_STYLE}'",
'-map', '0:v',
'-map', '1:a',
'-c:v', 'libx264', '-preset', 'ultrafast',
'-c:a', 'aac', '-shortest',
output_path
]
logger.info(f"Running FFmpeg command: {' '.join(ffmpeg_command)}")
subprocess.run(ffmpeg_command, check=True)
if os.path.exists(output_path):
logger.info(f"YouTube Short compiled successfully: {output_path}")
return output_path
else:
logger.error("Failed to create output video")
return None
except Exception as e:
logger.error(f"Error compiling YouTube Short: {str(e)}")
return None
finally:
# Clean up
for file in scene_files:
try:
os.remove(file)
except Exception as e:
logger.warning(f"Error removing file {file}: {str(e)}")
try:
if os.path.exists(concat_file):
os.remove(concat_file)
if os.path.exists(subtitle_file):
os.remove(subtitle_file)
except Exception as e:
logger.warning(f"Error removing temporary files: {str(e)}")
try:
shutil.rmtree(temp_dir)
except Exception as e:
logger.warning(f"Error removing temporary directory {temp_dir}: {str(e)}")
def apply_effects_to_image(image_path: str, temp_dir: str, scene_number: int, duration: float) -> str:
"""Applies effects to the generated image and creates a video scene."""
try:
processed_path = os.path.join(temp_dir, f"processed_scene_{scene_number}.mp4")
# Apply a zoom effect to the image
ffmpeg_command = [
'ffmpeg', '-y',
'-loop', '1',
'-i', image_path,
'-t', str(duration),
'-filter_complex', f'zoompan=z=\'min(zoom+0.0015,1.5)\':d={duration*30}:s={YOUTUBE_SHORT_RESOLUTION[0]}x{YOUTUBE_SHORT_RESOLUTION[1]}',
'-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-r', '30',
processed_path
]
subprocess.run(ffmpeg_command, check=True)
return processed_path
except Exception as e:
logger.error(f"Error applying effects to generated image for scene {scene_number}: {str(e)}")
return None
def create_video_from_image(image_path: str, temp_dir: str, scene_number: int, duration: float) -> str:
"""Creates a video scene from a static image."""
try:
processed_path = os.path.join(temp_dir, f"processed_scene_{scene_number}.mp4")
subprocess.run(['ffmpeg', '-y', '-loop', '1', '-i', image_path, '-t', str(duration),
'-r', '30',
'-vf', f'scale={YOUTUBE_SHORT_RESOLUTION[0]}:{YOUTUBE_SHORT_RESOLUTION[1]}:force_original_aspect_ratio=increase,crop={YOUTUBE_SHORT_RESOLUTION[0]}:{YOUTUBE_SHORT_RESOLUTION[1]}',
'-c:v', 'libx264', '-preset', 'ultrafast', '-an', processed_path],
check=True)
return processed_path
except Exception as e:
logger.error(f"Error creating video from image for scene {scene_number}: {str(e)}")
return None
def clean_text_for_tts(text: str) -> str:
"""
Cleans the text for TTS by removing or replacing unwanted characters.
Removes asterisks, unnecessary punctuation, and extra whitespace.
"""
# Remove asterisks
text = text.replace('*', '')
# Remove any undesired punctuation or symbols
text = re.sub(r'[^\w\s.,!?\'"]', '', text)
# Replace multiple punctuation marks with a single one
text = re.sub(r'([.!?])\1+', r'\1', text)
# Remove extra whitespace
text = ' '.join(text.split())
return text
def generate_voiceover(scenes: List[Dict[str, Any]], output_file: str) -> bool:
"""Generates per-scene voiceover from scene narrations using F5-TTS."""
if not scenes:
logging.error("No scenes provided for voiceover generation.")
return False
logging.info(f"Total number of scenes: {len(scenes)}")
temp_dir = tempfile.mkdtemp()
audio_segments = []
try:
f5_tts_dir = os.path.join(os.getcwd(), "F5-TTS")
inference_cli_path = os.path.join(f5_tts_dir, "inference-cli.py")
ref_audio = os.path.join(f5_tts_dir, "tests", "ref_audio", "mike.wav")
ref_text = ""
config_path = os.path.join(f5_tts_dir, "inference-cli.toml")
data_dir = os.path.join(f5_tts_dir, "data")
# Check and setup vocab file
vocab_file = os.path.join(data_dir, "Emilia_ZH_EN_pinyin", "vocab.txt")
if not os.path.exists(vocab_file):
logging.warning(f"Vocab file not found at {vocab_file}")
for root, dirs, files in os.walk(f5_tts_dir):
if "vocab.txt" in files:
found_vocab = os.path.join(root, "vocab.txt")
logging.info(f"Found vocab file at {found_vocab}")
os.makedirs(os.path.dirname(vocab_file), exist_ok=True)
os.symlink(found_vocab, vocab_file)
logging.info(f"Created symlink to vocab file at {vocab_file}")
break
else:
logging.error("Could not find vocab.txt file in F5-TTS directory")
return False
for i, scene in enumerate(scenes):
text = scene.get('narration_text', '').strip()
if not text or text.lower() == 'none':
continue
# Create a separate temp directory for each scene
scene_temp_dir = os.path.join(temp_dir, f"scene_{i}")
os.makedirs(scene_temp_dir, exist_ok=True)
# F5-TTS always outputs as 'out.wav' in the specified directory
temp_output_path = os.path.join(scene_temp_dir, "out.wav")
final_scene_path = os.path.join(temp_dir, f"scene_{i}.mp3")
logging.info(f"Generating voiceover for scene {i}")
command = [
"python", inference_cli_path,
"--config", config_path,
"--model", "F5-TTS",
"--ref_audio", ref_audio,
"--ref_text", ref_text,
"--gen_text", text,
"--output", scene_temp_dir,
"--vocab_file", vocab_file
]
try:
logging.info(f"Running F5-TTS command: {' '.join(command)}")
result = subprocess.run(command, check=True, capture_output=True, text=True)
logging.info("Voice generation successful")
logging.debug(f"F5-TTS output: {result.stdout}")
if os.path.exists(temp_output_path):
# Convert WAV to MP3
audio = AudioSegment.from_wav(temp_output_path)
audio.export(final_scene_path, format="mp3")
duration = len(audio) / 1000.0 # Convert milliseconds to seconds
scene['audio_file'] = final_scene_path
scene['audio_duration'] = duration
audio_segments.append(audio)
logging.info(f"Scene {i}: Audio duration = {duration}s")
else:
logging.error(f"Generated audio file not found at {temp_output_path}")
return False
except subprocess.CalledProcessError as e:
logging.error(f"Error during voice generation for scene {i}: {e}")
logging.error(f"Error output: {e.stderr}")
return False
except Exception as e:
logging.exception(f"Unexpected error during voice generation for scene {i}: {e}")
return False
finally:
# Clean up scene-specific temp directory
if os.path.exists(scene_temp_dir):
shutil.rmtree(scene_temp_dir)
if not audio_segments:
logging.error("No audio segments were generated.")
return False
# Combine all audio segments into one file
combined_audio = sum(audio_segments)
combined_audio.export(output_file, format='mp3')
logging.info(f"Combined voiceover saved to {output_file}")
return True
except Exception as e:
logging.error(f"Error generating voiceover: {str(e)}")
return False
finally:
try:
shutil.rmtree(temp_dir)
except Exception as e:
logging.warning(f"Error removing temporary directory {temp_dir}: {str(e)}")
def generate_subtitles(scenes: List[Dict[str, Any]], output_file: str, audio_file: str) -> bool:
try:
temp_dir = tempfile.mkdtemp()
input_text_file = os.path.join(temp_dir, "input_text.txt")
EXCLUDED_TEXTS = [
'none',
'no narration',
'no voiceover',
'no subtitles',
'just music',
'no specific text for this scene',
'no text',
'n/a',
'none.',
'none,',
'none\n',
'no narration.',
'no narration,',
'no narration\n',
' '
]
with open(input_text_file, "w", encoding="utf-8") as f:
for scene in scenes:
text = scene.get('narration_text', '').replace('\n', ' ').strip()
# Clean the text
text = clean_text_for_tts(text)
if text and not any(excluded_text.strip() == text.lower() for excluded_text in EXCLUDED_TEXTS):
f.write(text + " ")
# Align using Gentle
alignment_result = align_with_gentle(audio_file, input_text_file)
if not alignment_result:
raise Exception("Alignment failed with Gentle.")
# Convert alignment result to ASS
gentle_alignment_to_ass(alignment_result, output_file)
shutil.rmtree(temp_dir)
return True
except Exception as e:
logger.error(f"Error generating subtitles: {str(e)}")
return False
def calculate_scene_durations(scenes: List[Dict[str, Any]], audio_segments: List[AudioSegment]) -> List[float]:
"""
Calculates the duration of each scene based on the actual duration of the corresponding narration audio.
"""
if not scenes:
logger.error("No scene durations calculated. Cannot calculate scene durations.")
return None
scene_durations = []
for segment in audio_segments:
duration = len(segment) / 1000 # Convert milliseconds to seconds
scene_durations.append(duration)
return scene_durations
def process_video(video_path: str, temp_dir: str, scene_number: int, duration: float) -> Optional[str]:
try:
processed_path = os.path.join(temp_dir, f"processed_scene_{scene_number}.mp4")
duration_str = str(duration)
logger.info(f"Processing video for scene {scene_number}: Duration = {duration_str}s")
ffmpeg_command = [
'ffmpeg', '-y',
'-i', video_path,
'-t', duration_str,
'-vf', f'scale={YOUTUBE_SHORT_RESOLUTION[0]}:{YOUTUBE_SHORT_RESOLUTION[1]}:force_original_aspect_ratio=increase,crop={YOUTUBE_SHORT_RESOLUTION[0]}:{YOUTUBE_SHORT_RESOLUTION[1]}',
'-c:v', 'libx264',
'-preset', 'fast',
'-r', '30',
'-an',
processed_path
]
subprocess.run(ffmpeg_command, check=True)
if os.path.exists(processed_path):
logger.info(f"Processed video saved: {processed_path}")
return processed_path
else:
logger.error(f"Processed video not found: {processed_path}")
return None
except Exception as e:
logger.error(f"Error processing video for scene {scene_number}: {str(e)}")
return None
def create_fallback_scene(temp_dir: str, scene_number: int, duration: float, text: str) -> str:
"""Creates a fallback scene with a colored background and text."""
try:
fallback_path = os.path.join(temp_dir, f"fallback_scene_{scene_number}.mp4")
# Escape single quotes and other special characters in the text
escaped_text = text.replace("'", "'\\''").replace(':', '\\:')
ffmpeg_command = [
'ffmpeg', '-y', '-f', 'lavfi',
'-i', f'color=c={FALLBACK_SCENE_COLOR}:s={YOUTUBE_SHORT_RESOLUTION[0]}x{YOUTUBE_SHORT_RESOLUTION[1]}:d={duration}',
'-vf', f"drawtext=fontfile={FALLBACK_SCENE_FONT_FILE}:fontsize={FALLBACK_SCENE_FONT_SIZE}:"
f"fontcolor={FALLBACK_SCENE_TEXT_COLOR}:box=1:boxcolor={FALLBACK_SCENE_BOX_COLOR}:"
f"boxborderw={FALLBACK_SCENE_BOX_BORDER_WIDTH}:x=(w-tw)/2:y=(h-th)/2:text='{escaped_text}'",
'-c:v', 'libx265', '-preset', 'ultrafast', '-an',
fallback_path
]
# Log the full ffmpeg command
logger.debug(f"Fallback scene FFmpeg command: {' '.join(ffmpeg_command)}")
# Run ffmpeg command and capture output
result = subprocess.run(ffmpeg_command, check=True, capture_output=True, text=True)
# Log ffmpeg output
logger.debug(f"Fallback scene FFmpeg stdout:\n{result.stdout}")
logger.debug(f"Fallback scene FFmpeg stderr:\n{result.stderr}")
return fallback_path
except subprocess.CalledProcessError as e:
logger.error(f"Error creating fallback scene {scene_number}: {str(e)}")
logger.error(f"FFmpeg stdout:\n{e.stdout}")
logger.error(f"FFmpeg stderr:\n{e.stderr}")
return None
except Exception as e:
logger.error(f"Error creating fallback scene {scene_number}: {str(e)}")
return None
def extract_selected_title(selection_output: str) -> str:
"""
Extracts the selected title from the Title Selection Agent's output.
Assumes that the agent's output contains the selected title in a consistent format.
"""
try:
lines = selection_output.strip().split('\n')
for line in lines:
if "Selected Title:" in line or "Title:" in line:
# Extract the title part
title = line.split(":", 1)[1].strip().strip('"').strip("'")
return title
# If not found, return the entire output (may not be ideal)
return selection_output.strip()
except Exception as e:
logger.error(f"Error extracting selected title: {str(e)}")
return selection_output.strip()
def get_audio_duration(audio_file: str) -> float:
try:
result = subprocess.run(['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', audio_file], capture_output=True, text=True)
return float(result.stdout)
except Exception as e:
logger.error(f"Error getting audio duration: {str(e)}")
return 0.0
# Streamlit app
def main():
st.set_page_config(page_title="YouTube Shorts Generator", page_icon="🎥", layout="wide")
st.title("YouTube Shorts Generator")
# Input fields
topic = st.text_input("Enter the topic for your YouTube video:")
time_frame = st.text_input("Enter the time frame for recent events (e.g., 'past week', '30d', '1y'):")
video_length = st.number_input("Enter the desired video length in seconds:")
if st.button("Generate YouTube Shorts"):
if topic and time_frame:
with st.spinner("Generating YouTube Shorts ... This will take at least 3-5 minutes"):
try:
results = asyncio.run(youtube_shorts_workflow(topic, time_frame, video_length))
if "Error" in results:
st.error(f"An error occurred: {results['Error']}")
else:
display_results(results)
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
logger.exception("Unexpected error in YouTube Shorts generation")
else:
st.warning("Please enter both topic and time frame.")
def display_results(results):
st.subheader("Generation Results")
for agent_name, result in results.items():
with st.expander(f"{agent_name} Result"):
if agent_name == "Storyboard Generation Agent" and isinstance(result, list):
for scene in result:
st.write(f"Scene {scene['number']}:")
st.write(f"Visual: {scene['visual']}")
st.write(f"Text/Dialogue: {scene['narration_text']}")
if 'video_url' in scene:
st.write(f"Video URL: {scene['video_url']}")
st.write(f"Video Details: {scene['video_details']}")
elif 'image_url' in scene:
st.write(f"Image URL: {scene['image_url']}")
else:
st.write(result)
if "Output Video Path" in results:
output_path = results["Output Video Path"]
if output_path:
st.success(f"YouTube Short saved as '{output_path}'")
st.video(output_path)
else:
st.error("Failed to compile YouTube Short")
async def youtube_shorts_workflow(topic: str, time_frame: str, video_length: int) -> Dict[str, Any]:
# Create graph instance
graph = Graph() # Create an instance of the Graph class
video_length = video_length * 1000 # Convert to milliseconds
# Check if TikTok session ID is set
if not SESSION_ID:
logger.error("TikTok session ID is not set. Please set the TIKTOK_SESSION_ID environment variable.")
results["Error"] = "TikTok session ID is not set"
return results
# Create nodes
recent_events_node = Node(agent=RecentEventsResearchAgent())
title_gen_node = Node(agent=TitleGenerationAgent())
title_select_node = Node(agent=TitleSelectionAgent())
desc_gen_node = Node(agent=DescriptionGenerationAgent())
hashtag_tag_node = Node(agent=HashtagAndTagGenerationAgent())
script_gen_node = Node(agent=VideoScriptGenerationAgent())
image_gen_node = Node(agent=ImageGenerationAgent())
storyboard_gen_node = Node(agent=StoryboardGenerationAgent())
# Add nodes to graph
graph.add_node(recent_events_node) # Use the graph instance
graph.add_node(title_gen_node)
graph.add_node(title_select_node)
graph.add_node(desc_gen_node)
graph.add_node(hashtag_tag_node)
graph.add_node(script_gen_node)
graph.add_node(image_gen_node)
graph.add_node(storyboard_gen_node)
# Create and add edges
graph.add_edge(Edge(recent_events_node, title_gen_node)) # Use the graph instance
graph.add_edge(Edge(title_gen_node, title_select_node))
graph.add_edge(Edge(title_select_node, desc_gen_node))
graph.add_edge(Edge(desc_gen_node, hashtag_tag_node))
graph.add_edge(Edge(hashtag_tag_node, script_gen_node))
graph.add_edge(Edge(script_gen_node, image_gen_node))
graph.add_edge(Edge(image_gen_node, storyboard_gen_node))
logger.info(f"Running workflow for topic {topic} and time frame {time_frame}")
# Execute workflow
current_node = recent_events_node
logger.info(f"Starting workflow from node: {current_node.agent.name}")
input_data = {"topic": topic, "time_frame": time_frame}
results = {}
# Step 1: Recent Events Research Agent
input_data = {"topic": topic, "time_frame": time_frame}
try:
research_result = await recent_events_node.process(input_data)
results[recent_events_node.agent.name] = research_result
except Exception as e:
logger.error(f"Error in RecentEventsResearchAgent: {str(e)}")
results["Error"] = f"RecentEventsResearchAgent failed: {str(e)}"
return results
# Step 2: Title Generation Agent
try:
title_gen_result = await title_gen_node.process(research_result)
results[title_gen_node.agent.name] = title_gen_result
except Exception as e:
logger.error(f"Error in TitleGenerationAgent: {str(e)}")
results["Error"] = f"TitleGenerationAgent failed: {str(e)}"
return results
# Step 3: Title Selection Agent
try:
title_select_result = await title_select_node.process(title_gen_result)
results[title_select_node.agent.name] = title_select_result
except Exception as e:
logger.error(f"Error in TitleSelectionAgent: {str(e)}")
results["Error"] = f"TitleSelectionAgent failed: {str(e)}"
return results
# Extract the selected title from the title selection result
selected_title = extract_selected_title(title_select_result)
results["Selected Title"] = selected_title
# Step 4: Description Generation Agent
try:
desc_gen_result = await desc_gen_node.process(selected_title)
results[desc_gen_node.agent.name] = desc_gen_result
except Exception as e:
logger.error(f"Error in DescriptionGenerationAgent: {str(e)}")
results["Error"] = f"DescriptionGenerationAgent failed: {str(e)}"
return results
# Step 5: Hashtag and Tag Generation Agent
try:
hashtag_tag_result = await hashtag_tag_node.process(selected_title)
results[hashtag_tag_node.agent.name] = hashtag_tag_result
except Exception as e:
logger.error(f"Error in HashtagAndTagGenerationAgent: {str(e)}")
results["Error"] = f"HashtagAndTagGenerationAgent failed: {str(e)}"
return results
# Step 6: Video Script Generation Agent
try:
script_gen_input = {"research": research_result}
script_gen_result = await script_gen_node.process(script_gen_input)
results[script_gen_node.agent.name] = script_gen_result
except Exception as e:
logger.error(f"Error in VideoScriptGenerationAgent: {str(e)}")
results["Error"] = f"VideoScriptGenerationAgent failed: {str(e)}"
return results
# Step 7: Storyboard Generation Agent
logger.info("Executing Storyboard Generation Agent")
storyboard_gen_input = {
"script": script_gen_result,
}
storyboard_gen_result = await storyboard_gen_node.process(storyboard_gen_input)
if storyboard_gen_result is None:
raise ValueError("Storyboard Generation Agent returned None")
results[storyboard_gen_node.agent.name] = storyboard_gen_result
# Step 8: Image Generation Agent
logger.info("Executing Image Generation Agent")
image_gen_input = {"scenes": storyboard_gen_result}
image_gen_result = await image_gen_node.process(image_gen_input)
if image_gen_result is None:
raise ValueError("Image Generation Agent returned None")
results[image_gen_node.agent.name] = image_gen_result
# Update storyboard with generated images and calculate scene durations
total_duration = 0
for scene, image_result in zip(storyboard_gen_result, image_gen_result):
if image_result is not None and 'image_path' in image_result:
scene['image_path'] = image_result['image_path']
# Calculate scene duration based on word count or use a default duration
word_count = len(scene.get('script', '').split())
scene['duration'] = max(word_count * 0.5, 3.0) # Assume 0.5 seconds per word, minimum 3 seconds
total_duration += scene['duration']
else:
logger.warning(f"No image generated for scene {scene.get('number', 'unknown')}")
# Adjust scene durations to match target video length
target_duration = video_length / 1000 # Convert video_length to seconds
duration_factor = target_duration / total_duration
for scene in storyboard_gen_result:
scene['adjusted_duration'] = scene['duration'] * duration_factor
logger.info(f"Target duration: {target_duration} seconds")
logger.info(f"Total calculated duration: {total_duration} seconds")
logger.info(f"Duration factor: {duration_factor}")
# Filter out scenes without images
valid_scenes = [scene for scene in storyboard_gen_result if 'image_path' in scene]
if not valid_scenes:
raise ValueError("No valid scenes with images remaining")
# Log scene information
for i, scene in enumerate(valid_scenes):
logger.info(f"Scene {i}: Duration = {scene['duration']:.2f}s, Adjusted Duration = {scene['adjusted_duration']:.2f}s, Image = {scene['image_path']}")
# Proceed to generate voiceover and compile video
temp_dir = tempfile.mkdtemp()
audio_file = os.path.join(temp_dir, "voiceover.mp3")
if not generate_voiceover(valid_scenes, audio_file):
raise Exception("Failed to generate voiceover")
output_path = compile_youtube_short(scenes=valid_scenes, audio_file=audio_file)
if output_path:
print(f"YouTube Short saved as '{output_path}'")
results["Output Video Path"] = output_path
else:
print("Failed to compile YouTube Short")
results["Output Video Path"] = None
return results
if __name__ == "__main__":
main() |