File size: 82,063 Bytes
c2552dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 |
import os
import re
import json
import time
import random
import tempfile
import requests
import numpy as np
import uuid
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
from datetime import datetime
import gradio as gr
from dotenv import load_dotenv
import moviepy.editor as mpy
from moviepy.editor import *
from moviepy.audio.fx.all import volumex
from moviepy.video.fx.all import crop
# Suppress the asyncio "Event loop is closed" warning on Windows
import sys
if sys.platform.startswith('win'):
import asyncio
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
# Load environment variables from .env file if present
load_dotenv()
# Directory structure constants
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
STATIC_DIR = os.path.join(BASE_DIR, "static")
MUSIC_DIR = os.path.join(STATIC_DIR, "music")
FONTS_DIR = os.path.join(STATIC_DIR, "fonts")
STORAGE_DIR = os.path.join(BASE_DIR, "storage")
# Create necessary directories
os.makedirs(STATIC_DIR, exist_ok=True)
os.makedirs(MUSIC_DIR, exist_ok=True)
os.makedirs(FONTS_DIR, exist_ok=True)
os.makedirs(STORAGE_DIR, exist_ok=True)
# Helper functions for logging
def info(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [INFO] {message}"
print(formatted_message)
return formatted_message
def success(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [SUCCESS] {message}"
print(formatted_message)
return formatted_message
def warning(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [WARNING] {message}"
print(formatted_message)
return formatted_message
def error(message):
timestamp = datetime.now().strftime("%H:%M:%S")
formatted_message = f"[{timestamp}] [ERROR] {message}"
print(formatted_message)
return formatted_message
def get_music_files():
"""Get list of available music files in the music directory."""
if not os.path.exists(MUSIC_DIR):
return ["none"]
music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
if not music_files:
return ["none"]
return ["random"] + music_files
def get_font_files():
"""Get list of available font files in the fonts directory."""
if not os.path.exists(FONTS_DIR):
return ["default"]
font_files = [f.split('.')[0] for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
if not font_files:
return ["default"]
return ["random"] + font_files
def choose_random_music():
"""Selects a random music file from the music directory."""
if not os.path.exists(MUSIC_DIR):
error(f"Music directory {MUSIC_DIR} does not exist")
return None
music_files = [f for f in os.listdir(MUSIC_DIR) if f.endswith(('.mp3', '.wav'))]
if not music_files:
warning(f"No music files found in {MUSIC_DIR}")
return None
return os.path.join(MUSIC_DIR, random.choice(music_files))
def choose_random_font():
"""Selects a random font file from the fonts directory."""
if not os.path.exists(FONTS_DIR):
error(f"Fonts directory {FONTS_DIR} does not exist")
return "default"
font_files = [f for f in os.listdir(FONTS_DIR) if f.endswith(('.ttf', '.otf'))]
if not font_files:
warning(f"No font files found in {FONTS_DIR}")
return None
return font_files[0].split('.')[0] if len(font_files) == 1 else random.choice([f.split('.')[0] for f in font_files])
class YouTube:
def __init__(self, niche: str, language: str,
text_gen="g4f", text_model="gpt-4",
image_gen="g4f", image_model="flux",
tts_engine="edge", tts_voice="en-US-AriaNeural",
subtitle_font="default", font_size=80,
text_color="white", highlight_color="blue",
subtitles_enabled=True, highlighting_enabled=True,
subtitle_position="bottom", music_file="random",
enable_music=True, music_volume=0.1,
api_keys=None, progress=gr.Progress()) -> None:
"""Initialize the YouTube Shorts Generator."""
self.progress = progress
self.progress(0, desc="Initializing")
# Store basic parameters
info(f"Initializing YouTube class")
self._niche = niche
self._language = language
self.text_gen = text_gen
self.text_model = text_model
self.image_gen = image_gen
self.image_model = image_model
self.tts_engine = tts_engine
self.tts_voice = tts_voice
self.subtitle_font = subtitle_font
self.font_size = font_size
self.text_color = text_color
self.highlight_color = highlight_color
self.subtitles_enabled = subtitles_enabled
self.highlighting_enabled = highlighting_enabled
self.subtitle_position = subtitle_position
self.music_file = music_file
self.enable_music = enable_music
self.music_volume = music_volume
self.api_keys = api_keys or {}
self.images = []
self.logs = []
# Set API keys from parameters or environment variables
if 'gemini' in self.api_keys and self.api_keys['gemini']:
os.environ["GEMINI_API_KEY"] = self.api_keys['gemini']
if 'assemblyai' in self.api_keys and self.api_keys['assemblyai']:
os.environ["ASSEMBLYAI_API_KEY"] = self.api_keys['assemblyai']
if 'elevenlabs' in self.api_keys and self.api_keys['elevenlabs']:
os.environ["ELEVENLABS_API_KEY"] = self.api_keys['elevenlabs']
if 'segmind' in self.api_keys and self.api_keys['segmind']:
os.environ["SEGMIND_API_KEY"] = self.api_keys['segmind']
if 'openai' in self.api_keys and self.api_keys['openai']:
os.environ["OPENAI_API_KEY"] = self.api_keys['openai']
info(f"Niche: {niche}, Language: {language}")
self.log(f"Initialized with niche: {niche}, language: {language}")
self.log(f"Text generator: {text_gen} - Model: {text_model}")
self.log(f"Image generator: {image_gen} - Model: {image_model}")
self.log(f"TTS engine: {tts_engine} - Voice: {tts_voice}")
self.log(f"Subtitles: {'Enabled' if subtitles_enabled else 'Disabled'} - Highlighting: {'Enabled' if highlighting_enabled else 'Disabled'}")
self.log(f"Music: {music_file}")
def log(self, message):
"""Add a log message to the logs list."""
timestamp = datetime.now().strftime("%H:%M:%S")
log_entry = f"[{timestamp}] {message}"
self.logs.append(log_entry)
return log_entry
@property
def niche(self) -> str:
return self._niche
@property
def language(self) -> str:
return self._language
def generate_response(self, prompt: str, model: str = None) -> str:
"""Generate a response using the selected text generation model."""
self.log(f"Generating response for prompt: {prompt[:50]}...")
try:
if self.text_gen == "gemini":
self.log("Using Google's Gemini model")
# Check if API key is set
gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
if not gemini_api_key:
raise ValueError("Gemini API key is not set. Please provide a valid API key.")
import google.generativeai as genai
genai.configure(api_key=gemini_api_key)
model_to_use = model if model else self.text_model
genai_model = genai.GenerativeModel(model_to_use)
response = genai_model.generate_content(prompt).text
elif self.text_gen == "g4f":
self.log("Using G4F for text generation")
import g4f
model_to_use = model if model else self.text_model
self.log(f"Using G4F model: {model_to_use}")
response = g4f.ChatCompletion.create(
model=model_to_use,
messages=[{"role": "user", "content": prompt}]
)
elif self.text_gen == "openai":
self.log("Using OpenAI for text generation")
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
if not openai_api_key:
raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
from openai import OpenAI
client = OpenAI(api_key=openai_api_key)
model_to_use = model if model else "gpt-3.5-turbo"
response = client.chat.completions.create(
model=model_to_use,
messages=[{"role": "user", "content": prompt}]
).choices[0].message.content
else:
# No fallback, raise an exception for unsupported text generator
error_msg = f"Unsupported text generator: {self.text_gen}"
self.log(error(error_msg))
raise ValueError(error_msg)
self.log(f"Response generated successfully, length: {len(response)} characters")
return response
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
self.log(error(error_msg))
raise Exception(error_msg)
def generate_topic(self) -> str:
"""Generate a topic based on the YouTube Channel niche."""
self.progress(0.05, desc="Generating topic")
self.log("Generating topic based on niche")
completion = self.generate_response(
f"Please generate a specific video idea that takes about the following topic: {self.niche}. "
f"Make it exactly one sentence. Only return the topic, nothing else."
)
if not completion:
self.log(error("Failed to generate Topic."))
raise Exception("Failed to generate a topic. Please try again with a different niche.")
self.subject = completion
self.log(success(f"Generated topic: {completion}"))
return completion
def generate_script(self) -> str:
"""Generate a script for a video, based on the subject and language."""
self.progress(0.1, desc="Creating script")
self.log("Generating script for video")
prompt = f"""
Generate a script for youtube shorts video, depending on the subject of the video.
The script is to be returned as a string with the specified number of paragraphs.
Here is an example of a string:
"This is an example string."
Do not under any circumstance reference this prompt in your response.
Get straight to the point, don't start with unnecessary things like, "welcome to this video".
Obviously, the script should be related to the subject of the video.
YOU MUST NOT INCLUDE ANY TYPE OF MARKDOWN OR FORMATTING IN THE SCRIPT, NEVER USE A TITLE.
YOU MUST WRITE THE SCRIPT IN THE LANGUAGE SPECIFIED IN [LANGUAGE].
ONLY RETURN THE RAW CONTENT OF THE SCRIPT. DO NOT INCLUDE "VOICEOVER", "NARRATOR" OR SIMILAR INDICATORS.
Subject: {self.subject}
Language: {self.language}
"""
completion = self.generate_response(prompt)
# Apply regex to remove *
completion = re.sub(r"\*", "", completion)
if not completion:
self.log(error("The generated script is empty."))
raise Exception("Failed to generate a script. Please try again.")
if len(completion) > 5000:
self.log(warning("Generated script is too long."))
raise ValueError("Generated script exceeds 5000 characters. Please try again.")
self.script = completion
self.log(success(f"Generated script ({len(completion)} chars)"))
return completion
def generate_metadata(self) -> dict:
"""Generate video metadata (title, description)."""
self.progress(0.15, desc="Creating title and description")
self.log("Generating metadata (title and description)")
title = self.generate_response(
f"Please generate a YouTube Video Title for the following subject, including hashtags: "
f"{self.subject}. Only return the title, nothing else. Limit the title under 100 characters."
)
if len(title) > 100:
self.log(warning("Generated title exceeds 100 characters."))
raise ValueError("Generated title exceeds 100 characters. Please try again.")
description = self.generate_response(
f"Please generate a YouTube Video Description for the following script: {self.script}. "
f"Only return the description, nothing else."
)
self.metadata = {
"title": title,
"description": description
}
self.log(success(f"Generated title: {title}"))
self.log(success(f"Generated description: {description[:50]}..."))
return self.metadata
def generate_prompts(self, count=5) -> list:
"""Generate AI Image Prompts based on the provided Video Script."""
self.progress(0.2, desc="Creating image prompts")
self.log(f"Generating {count} image prompts")
prompt = f"""
Generate {count} Image Prompts for AI Image Generation,
depending on the subject of a video.
Subject: {self.subject}
The image prompts are to be returned as
a JSON-Array of strings.
Each search term should consist of a full sentence,
always add the main subject of the video.
Be emotional and use interesting adjectives to make the
Image Prompt as detailed as possible.
YOU MUST ONLY RETURN THE JSON-ARRAY OF STRINGS.
YOU MUST NOT RETURN ANYTHING ELSE.
YOU MUST NOT RETURN THE SCRIPT.
The search terms must be related to the subject of the video.
Here is an example of a JSON-Array of strings:
["image prompt 1", "image prompt 2", "image prompt 3"]
For context, here is the full text:
{self.script}
"""
completion = str(self.generate_response(prompt))\
.replace("```json", "") \
.replace("```", "")
image_prompts = []
if "image_prompts" in completion:
try:
image_prompts = json.loads(completion)["image_prompts"]
except:
self.log(warning("Failed to parse 'image_prompts' from JSON response."))
if not image_prompts:
try:
image_prompts = json.loads(completion)
self.log(f"Parsed image prompts from JSON response.")
except Exception:
self.log(warning("JSON parsing failed. Attempting to extract array using regex..."))
# Get everything between [ and ], and turn it into a list
r = re.compile(r"\[.*\]", re.DOTALL)
matches = r.findall(completion)
if len(matches) == 0:
self.log(warning("Failed to extract array. Unable to create image prompts."))
raise ValueError("Failed to generate valid image prompts. Please try again.")
else:
try:
image_prompts = json.loads(matches[0])
except:
self.log(error("Failed to parse array from regex match."))
# Use regex to extract individual strings
string_pattern = r'"([^"]*)"'
strings = re.findall(string_pattern, matches[0])
if strings:
image_prompts = strings
else:
self.log(error("Failed to extract strings from regex match."))
raise ValueError("Failed to parse image prompts. Please try again.")
# Ensure we have the requested number of prompts
if len(image_prompts) < count:
self.log(warning(f"Received fewer prompts ({len(image_prompts)}) than requested ({count})."))
raise ValueError(f"Received only {len(image_prompts)} prompts instead of {count}. Please try again.")
# Limit to the requested count
image_prompts = image_prompts[:count]
self.image_prompts = image_prompts
self.log(success(f"Generated {len(self.image_prompts)} Image Prompts"))
for i, prompt in enumerate(self.image_prompts):
self.log(f"Image Prompt {i+1}: {prompt}")
return image_prompts
def generate_image(self, prompt) -> str:
"""Generate an image using the selected image generation model."""
self.log(f"Generating image for prompt: {prompt[:50]}...")
# Always save images directly to the generation folder when it exists
if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
image_path = os.path.join(self.generation_folder, f"img_{uuid.uuid4()}_{int(time.time())}.png")
else:
# Use STORAGE_DIR if no generation folder
image_path = os.path.join(STORAGE_DIR, f"img_{uuid.uuid4()}_{int(time.time())}.png")
if self.image_gen == "prodia":
self.log("Using Prodia provider for image generation")
s = requests.Session()
headers = {
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
}
# Generate job
self.log("Sending generation request to Prodia API")
resp = s.get(
"https://api.prodia.com/generate",
params={
"new": "true",
"prompt": prompt,
"model": self.image_model,
"negative_prompt": "verybadimagenegative_v1.3",
"steps": "20",
"cfg": "7",
"seed": random.randint(1, 10000),
"sample": "DPM++ 2M Karras",
"aspect_ratio": "square"
},
headers=headers
)
if resp.status_code != 200:
raise Exception(f"Prodia API error: {resp.text}")
job_id = resp.json()['job']
self.log(f"Job created with ID: {job_id}")
# Wait for generation to complete
max_attempts = 30
attempts = 0
while attempts < max_attempts:
attempts += 1
time.sleep(2)
status = s.get(f"https://api.prodia.com/job/{job_id}", headers=headers).json()
if status["status"] == "succeeded":
self.log("Image generation successful, downloading result")
img_data = s.get(f"https://images.prodia.xyz/{job_id}.png?download=1", headers=headers).content
with open(image_path, "wb") as f:
f.write(img_data)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
elif status["status"] == "failed":
raise Exception(f"Prodia job failed: {status.get('error', 'Unknown error')}")
# Still processing
self.log(f"Still processing, attempt {attempts}/{max_attempts}...")
raise Exception("Prodia job timed out")
elif self.image_gen == "hercai":
self.log("Using Hercai provider for image generation")
url = f"https://hercai.onrender.com/{self.image_model}/text2image?prompt={prompt}"
r = requests.get(url)
if r.status_code != 200:
raise Exception(f"Hercai API error: {r.text}")
parsed = r.json()
if "url" in parsed and parsed["url"]:
self.log("Image URL received from Hercai")
image_url = parsed["url"]
img_data = requests.get(image_url).content
with open(image_path, "wb") as f:
f.write(img_data)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception("No image URL in Hercai response")
elif self.image_gen == "g4f":
self.log("Using G4F provider for image generation")
from g4f.client import Client
client = Client()
response = client.images.generate(
model=self.image_model,
prompt=prompt,
response_format="url"
)
if response and response.data and len(response.data) > 0:
image_url = response.data[0].url
image_response = requests.get(image_url)
if image_response.status_code == 200:
with open(image_path, "wb") as f:
f.write(image_response.content)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception(f"Failed to download image from {image_url}")
else:
raise Exception("No image URL received from G4F")
elif self.image_gen == "segmind":
self.log("Using Segmind provider for image generation")
api_key = os.environ.get("SEGMIND_API_KEY", "")
if not api_key:
raise ValueError("Segmind API key is not set. Please provide a valid API key.")
headers = {
"x-api-key": api_key,
"Content-Type": "application/json"
}
response = requests.post(
"https://api.segmind.com/v1/sdxl-turbo",
json={
"prompt": prompt,
"negative_prompt": "blurry, low quality, distorted face, text, watermark",
"samples": 1,
"size": "1024x1024",
"guidance_scale": 1.0
},
headers=headers
)
if response.status_code == 200:
with open(image_path, "wb") as f:
f.write(response.content)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception(f"Segmind request failed: {response.status_code} {response.text}")
elif self.image_gen == "pollinations":
self.log("Using Pollinations provider for image generation")
response = requests.get(f"https://image.pollinations.ai/prompt/{prompt}{random.randint(1,10000)}")
if response.status_code == 200:
self.log("Image received from Pollinations")
with open(image_path, "wb") as f:
f.write(response.content)
self.images.append(image_path)
self.log(success(f"Image saved to: {image_path}"))
return image_path
else:
raise Exception(f"Pollinations request failed with status code: {response.status_code}")
else:
# No fallback, raise an exception for unsupported image generator
error_msg = f"Unsupported image generator: {self.image_gen}"
self.log(error(error_msg))
raise ValueError(error_msg)
def generate_speech(self, text, output_format='mp3') -> str:
"""Generate speech from text using the selected TTS engine."""
self.progress(0.6, desc="Creating voiceover")
self.log("Generating speech from text")
# Clean text
text = re.sub(r'[^\w\s.?!,;:\'"-]', '', text)
self.log(f"Using TTS Engine: {self.tts_engine}, Voice: {self.tts_voice}")
# Always save to the generation folder when available
if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
audio_path = os.path.join(self.generation_folder, f"speech_{uuid.uuid4()}_{int(time.time())}.{output_format}")
else:
# Use STORAGE_DIR if no generation folder
audio_path = os.path.join(STORAGE_DIR, f"speech_{uuid.uuid4()}_{int(time.time())}.{output_format}")
if self.tts_engine == "elevenlabs":
self.log("Using ElevenLabs provider for speech generation")
elevenlabs_api_key = os.environ.get("ELEVENLABS_API_KEY", "")
if not elevenlabs_api_key:
raise ValueError("ElevenLabs API key is not set. Please provide a valid API key.")
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": elevenlabs_api_key
}
payload = {
"text": text,
"model_id": "eleven_turbo_v2", # Using latest and most capable model
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5,
"style": 0.0,
"use_speaker_boost": True
},
"output_format": "mp3_44100_128", # Higher quality audio (44.1kHz, 128kbps)
"optimize_streaming_latency": 0 # Optimize for quality over latency
}
# Map voice names to ElevenLabs voice IDs
voice_id_mapping = {
"Sarah": "21m00Tcm4TlvDq8ikWAM",
"Brian": "hxppwzoRmvxK7YkDrjhQ",
"Lily": "p7TAj7L6QVq1fE6XGyjR",
"Monika Sogam": "Fc3XhIu9tfgOPOsU1hMr",
"George": "o7lPjDgzlF8ZAeSpqmaN",
"River": "f0k5evLkhJxrIRJXQJvy",
"Matilda": "XrExE9yKIg1WjnnlVkGX",
"Will": "pvKWM1B1sNRNTlEYYAEZ",
"Jessica": "A5EAMYWMCSsLNL1wYxOv",
"default": "21m00Tcm4TlvDq8ikWAM" # Default to Sarah
}
# Get the voice ID from mapping or use the voice name as ID if not found
voice_id = voice_id_mapping.get(self.tts_voice, self.tts_voice)
self.log(f"Using ElevenLabs voice: {self.tts_voice} (ID: {voice_id})")
response = requests.post(
url=f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}",
json=payload,
headers=headers
)
if response.status_code == 200:
with open(audio_path, 'wb') as f:
f.write(response.content)
self.log(success(f"Speech generated successfully using ElevenLabs at {audio_path}"))
else:
try:
error_data = response.json()
error_message = error_data.get('detail', {}).get('message', response.text)
error_status = error_data.get('status', 'error')
raise Exception(f"ElevenLabs API error ({response.status_code}, {error_status}): {error_message}")
except ValueError:
# If JSON parsing fails, use the raw response
raise Exception(f"ElevenLabs API error ({response.status_code}): {response.text}")
elif self.tts_engine == "gtts":
self.log("Using Google TTS provider for speech generation")
from gtts import gTTS
tts = gTTS(text=text, lang=self.language[:2].lower(), slow=False)
tts.save(audio_path)
elif self.tts_engine == "openai":
self.log("Using OpenAI provider for speech generation")
openai_api_key = os.environ.get("OPENAI_API_KEY", "")
if not openai_api_key:
raise ValueError("OpenAI API key is not set. Please provide a valid API key.")
from openai import OpenAI
client = OpenAI(api_key=openai_api_key)
voice = self.tts_voice if self.tts_voice else "alloy"
response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text
)
response.stream_to_file(audio_path)
elif self.tts_engine == "edge":
self.log("Using Edge TTS provider for speech generation")
import edge_tts
import asyncio
voice = self.tts_voice if self.tts_voice else "en-US-AriaNeural"
async def generate():
communicate = edge_tts.Communicate(text, voice)
await communicate.save(audio_path)
asyncio.run(generate())
else:
# No fallback, raise an exception for unsupported TTS engine
error_msg = f"Unsupported TTS engine: {self.tts_engine}"
self.log(error(error_msg))
raise ValueError(error_msg)
self.log(success(f"Speech generated and saved to: {audio_path}"))
self.tts_path = audio_path
return audio_path
def generate_subtitles(self, audio_path: str) -> dict:
"""Generate subtitles from audio using AssemblyAI."""
# If subtitles are disabled, return empty data with settings
if not self.subtitles_enabled:
self.log("Subtitles are disabled, skipping generation")
return {
"wordlevel": [],
"linelevel": [],
"settings": {
"font": self.subtitle_font,
"fontsize": self.font_size,
"color": self.text_color,
"bg_color": self.highlight_color if self.highlighting_enabled else None,
"position": self.subtitle_position,
"highlighting_enabled": self.highlighting_enabled,
"subtitles_enabled": self.subtitles_enabled
}
}
self.log("Generating subtitles from audio")
try:
import assemblyai as aai
# Check if API key is set
aai_api_key = os.environ.get("ASSEMBLYAI_API_KEY", "")
if not aai_api_key:
raise ValueError("AssemblyAI API key is not set. Please provide a valid API key.")
aai.settings.api_key = aai_api_key
config = aai.TranscriptionConfig(speaker_labels=False, word_boost=[], format_text=True)
transcriber = aai.Transcriber(config=config)
self.log("Submitting audio for transcription")
transcript = transcriber.transcribe(audio_path)
if not transcript or not transcript.words:
raise ValueError("Transcription returned no words.")
# Process word-level information
wordlevel_info = []
for word in transcript.words:
word_data = {
"word": word.text.strip(),
"start": word.start / 1000.0, # Convert from ms to seconds
"end": word.end / 1000.0 # Convert from ms to seconds
}
wordlevel_info.append(word_data)
self.log(success(f"Transcription successful. Got {len(wordlevel_info)} words."))
# Define constants for subtitle generation
# Handle random font selection if configured
if self.subtitle_font == "random":
FONT = choose_random_font()
self.log(f"Using random font: {FONT}")
else:
FONT = self.subtitle_font
FONTSIZE = self.font_size
COLOR = self.text_color
BG_COLOR = self.highlight_color if self.highlighting_enabled else None
FRAME_SIZE = (1080, 1920) # Vertical video format
# Constants for line splitting
MAX_CHARS = 30 # Maximum characters per line for vertical video format
MAX_DURATION = 3.0 # Maximum duration for a single line
MAX_GAP = 1.5 # Split if nothing is spoken for this many seconds
# Split text into lines
subtitles = []
line = []
line_duration = 0
for idx, word_data in enumerate(wordlevel_info):
word = word_data["word"]
start = word_data["start"]
end = word_data["end"]
line.append(word_data)
line_duration += end - start
temp = " ".join(item["word"] for item in line)
new_line_chars = len(temp)
duration_exceeded = line_duration > MAX_DURATION
chars_exceeded = new_line_chars > MAX_CHARS
if idx > 0:
gap = word_data['start'] - wordlevel_info[idx-1]['end']
maxgap_exceeded = gap > MAX_GAP
else:
maxgap_exceeded = False
if duration_exceeded or chars_exceeded or maxgap_exceeded:
if line:
subtitle_line = {
"text": " ".join(item["word"] for item in line),
"start": line[0]["start"],
"end": line[-1]["end"],
"words": line
}
subtitles.append(subtitle_line)
line = []
line_duration = 0
# Add remaining words as last line
if line:
subtitle_line = {
"text": " ".join(item["word"] for item in line),
"start": line[0]["start"],
"end": line[-1]["end"],
"words": line
}
subtitles.append(subtitle_line)
self.log(success(f"Generated {len(subtitles)} subtitle lines"))
# Return the subtitle data and settings
return {
"wordlevel": wordlevel_info,
"linelevel": subtitles,
"settings": {
"font": FONT,
"fontsize": FONTSIZE,
"color": COLOR,
"bg_color": BG_COLOR,
"position": self.subtitle_position,
"highlighting_enabled": self.highlighting_enabled,
"subtitles_enabled": self.subtitles_enabled
}
}
except Exception as e:
error_msg = f"Error generating subtitles: {str(e)}"
self.log(error(error_msg))
raise Exception(error_msg)
def create_subtitle_clip(self, subtitle_data, frame_size):
"""Create subtitle clips for a line of text with word-level highlighting."""
# Early return if subtitles are disabled
if not subtitle_data.get("settings", {}).get("subtitles_enabled", True):
self.log("Subtitles are disabled, skipping subtitle clip creation")
return []
settings = subtitle_data["settings"]
font_name = settings["font"]
fontsize = settings["fontsize"]
color = settings["color"]
bg_color = settings["bg_color"]
highlighting_enabled = settings["highlighting_enabled"]
# Pre-load font and calculate color values once
try:
font_path = os.path.join(FONTS_DIR, f"{font_name}.ttf")
if os.path.exists(font_path):
pil_font = ImageFont.truetype(font_path, fontsize)
else:
self.log(warning(f"Font {font_name} not found, using default"))
pil_font = ImageFont.load_default()
except Exception as e:
self.log(warning(f"Error loading font: {str(e)}"))
pil_font = ImageFont.load_default()
# Parse colors once
if color.startswith('#'):
text_color_rgb = tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
else:
text_color_rgb = (255, 255, 255) # Default white
if bg_color and bg_color.startswith('#'):
bg_color_rgb = tuple(int(bg_color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
else:
bg_color_rgb = (0, 0, 255) # Default blue
# Optimize text clip creation - cache clips for reuse
clip_cache = {}
def create_text_clip(text, bg_color=None, cache_key=None):
# Use cache when possible for better performance
if cache_key and cache_key in clip_cache:
return clip_cache[cache_key]
try:
# Get text size
text_width, text_height = pil_font.getbbox(text)[2:4]
# Add padding
padding = 10
img_width = text_width + padding * 2
img_height = text_height + padding * 2
# Create image with background color or transparent
if bg_color:
img = Image.new('RGB', (img_width, img_height), color=bg_color_rgb)
else:
img = Image.new('RGBA', (img_width, img_height), color=(0, 0, 0, 0))
# Draw text
draw = ImageDraw.Draw(img)
draw.text((padding, padding), text, font=pil_font, fill=text_color_rgb)
# Convert to numpy array for MoviePy
img_array = np.array(img)
clip = ImageClip(img_array)
# Cache result for reuse
if cache_key:
clip_cache[cache_key] = (clip, img_width, img_height)
return clip, img_width, img_height
except Exception as e:
self.log(warning(f"Error creating text clip: {str(e)}"))
# Create a simple colored rectangle as fallback
img = Image.new('RGB', (100, 50), color=(100, 100, 100))
img_array = np.array(img)
clip = ImageClip(img_array)
return clip, 100, 50
subtitle_clips = []
# Calculate position constants once
if settings["position"] == "top":
y_buffer = frame_size[1] * 0.1 # 10% from top
elif settings["position"] == "middle":
y_buffer = frame_size[1] * 0.4 # 40% from top
else: # bottom
y_buffer = frame_size[1] * 0.7 # 70% from top
max_width = frame_size[0] * 0.8 # 80% of frame width
# Group words by timing to reduce number of clips (optimization)
word_groups = {}
# Process each line more efficiently by grouping
for line_idx, line in enumerate(subtitle_data["linelevel"]):
# Group words by start/end times to reduce clip count
line_text = line["text"]
line_start = line["start"]
line_end = line["end"]
line_duration = line_end - line_start
# First pass: calculate word dimensions and break text into lines
lines_data = [] # Store data for each line (words, positions)
current_line = []
current_x = 0
for word_data in line["words"]:
word = word_data["word"]
# Calculate dimensions without creating image yet
word_width = pil_font.getbbox(word)[2] + 20 # Add padding
word_height = pil_font.getbbox(word)[3] + 20
# Check if word fits on current line
if current_x + word_width > max_width and current_line:
# Complete current line
lines_data.append({
"words": current_line.copy(),
"total_width": current_x,
"height": max(w["height"] for w in current_line) if current_line else word_height
})
current_line = []
current_x = 0
# Add word to current line
word_info = {
"word": word,
"width": word_width,
"height": word_height,
"start": word_data["start"],
"end": word_data["end"]
}
current_line.append(word_info)
current_x += word_width
# Add the last line if needed
if current_line:
lines_data.append({
"words": current_line,
"total_width": current_x,
"height": max(w["height"] for w in current_line)
})
# Second pass: Create clip for each line (batch processing)
current_y = y_buffer
for line_data in lines_data:
# Calculate center position for entire line
line_width = line_data["total_width"]
x_center = (frame_size[0] - line_width) / 2
# Create text clip for complete line (non-highlighted base)
line_text = " ".join(w["word"] for w in line_data["words"])
cache_key = f"line_{line_idx}_{line_text}"
line_clip, measured_width, _ = create_text_clip(line_text, None, cache_key)
# Position the line in the center
line_clip = line_clip.set_position((x_center, current_y))
line_clip = line_clip.set_start(line["start"]).set_duration(line_duration)
subtitle_clips.append(line_clip)
# Add highlighted words if enabled (more efficiently)
if highlighting_enabled and bg_color:
current_x = x_center
# Group words with same timing to reduce clip count
timing_groups = {}
for word_info in line_data["words"]:
timing_key = f"{word_info['start']:.3f}_{word_info['end']:.3f}"
if timing_key not in timing_groups:
timing_groups[timing_key] = []
timing_groups[timing_key].append((word_info, current_x))
current_x += word_info["width"]
# Create one clip per timing group instead of per word
for timing_key, word_group in timing_groups.items():
start_time, end_time = map(float, timing_key.split('_'))
# If only one word in this timing, create single highlight
if len(word_group) == 1:
word_info, x_pos = word_group[0]
word = word_info["word"]
cache_key = f"word_{word}"
highlight_clip, _, _ = create_text_clip(word, bg_color, cache_key)
highlight_clip = highlight_clip.set_position((x_pos, current_y))
highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
subtitle_clips.append(highlight_clip)
else:
# Multiple words with same timing - try to batch if adjacent
# (This is an optimization for words that appear together)
continue_batch = True
batch_start_idx = 0
while continue_batch and batch_start_idx < len(word_group):
# Start a new batch
batch = [word_group[batch_start_idx]]
batch_x = word_group[batch_start_idx][1]
current_batch_end = batch_start_idx
# Try to extend batch with adjacent words
for i in range(batch_start_idx + 1, len(word_group)):
prev_word, prev_x = word_group[i-1]
curr_word, curr_x = word_group[i]
# Check if words are adjacent
if abs(prev_x + prev_word["width"] - curr_x) < 5: # Small tolerance
batch.append(word_group[i])
current_batch_end = i
else:
break
# Create clip for this batch
if len(batch) > 1:
# Multiple adjacent words - create single highlight
batch_text = " ".join(info[0]["word"] for info in batch)
batch_width = batch[-1][1] + batch[-1][0]["width"] - batch[0][1]
cache_key = f"batch_{batch_text}"
highlight_clip, _, _ = create_text_clip(batch_text, bg_color, cache_key)
highlight_clip = highlight_clip.set_position((batch_x, current_y))
highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
subtitle_clips.append(highlight_clip)
else:
# Single word in batch
word_info, x_pos = batch[0]
word = word_info["word"]
cache_key = f"word_{word}"
highlight_clip, _, _ = create_text_clip(word, bg_color, cache_key)
highlight_clip = highlight_clip.set_position((x_pos, current_y))
highlight_clip = highlight_clip.set_start(start_time).set_duration(end_time - start_time)
subtitle_clips.append(highlight_clip)
# Move to next batch
batch_start_idx = current_batch_end + 1
if batch_start_idx >= len(word_group):
continue_batch = False
# Move to next line
current_y += line_data["height"] + 10
# Limit the number of subtitle clips to avoid memory issues
if len(subtitle_clips) > 200:
self.log(warning(f"Too many subtitle clips ({len(subtitle_clips)}), limiting to 200 for performance"))
subtitle_clips = subtitle_clips[:200]
self.log(f"Created {len(subtitle_clips)} subtitle clips (optimized)")
return subtitle_clips
def combine(self) -> str:
"""Combine images, audio, and subtitles into a final video."""
self.progress(0.8, desc="Creating final video")
self.log("Combining images and audio into final video")
try:
# Use RAM for temporary files if possible
import tempfile
temp_dir = tempfile.mkdtemp()
# Always save to the generation folder when available
if hasattr(self, 'generation_folder') and os.path.exists(self.generation_folder):
output_path = os.path.join(self.generation_folder, f"output_{int(time.time())}.mp4")
else:
output_path = os.path.join(STORAGE_DIR, f"output_{int(time.time())}.mp4")
# Check for required files
if not self.images:
raise ValueError("No images available for video creation")
if not hasattr(self, 'tts_path') or not self.tts_path or not os.path.exists(self.tts_path):
raise ValueError("No TTS audio file available")
# Load audio
tts_clip = AudioFileClip(self.tts_path)
max_duration = tts_clip.duration
# Calculate duration for each image
num_images = len(self.images)
req_dur = max_duration / num_images
# Process each image ONCE to create base clips (optimization)
self.log("Processing images (optimized)")
processed_clips = []
for image_path in self.images:
if not os.path.exists(image_path):
self.log(warning(f"Image not found: {image_path}, skipping"))
continue
try:
# Load and process image once
clip = ImageClip(image_path)
# Use lower FPS for slideshow-style videos
clip = clip.set_fps(15)
# Handle aspect ratio (vertical video for shorts)
aspect_ratio = 9/16 # Standard vertical video ratio
if clip.w / clip.h < aspect_ratio:
# Image is too tall, crop height
clip = crop(
clip,
width=clip.w,
height=round(clip.w / aspect_ratio),
x_center=clip.w / 2,
y_center=clip.h / 2
)
else:
# Image is too wide, crop width
clip = crop(
clip,
width=round(aspect_ratio * clip.h),
height=clip.h,
x_center=clip.w / 2,
y_center=clip.h / 2
)
# Use a more efficient resolution (still good for mobile)
clip = clip.resize((720, 1280))
processed_clips.append(clip)
except Exception as e:
self.log(warning(f"Error processing image {image_path}: {str(e)}"))
if not processed_clips:
raise ValueError("No valid images could be processed")
# Create sequence using processed clips, repeated as needed
self.log(f"Creating video sequence from {len(processed_clips)} clips")
final_clips = []
tot_dur = 0
while tot_dur < max_duration:
for base_clip in processed_clips:
duration = min(req_dur, max_duration - tot_dur)
if duration <= 0:
break
# Reuse the pre-processed clip with new duration
duration_clip = base_clip.set_duration(duration)
final_clips.append(duration_clip)
tot_dur += duration
if tot_dur >= max_duration:
break
# Create video from sequence
self.log(f"Concatenating {len(final_clips)} clips")
final_clip = concatenate_videoclips(final_clips)
final_clip = final_clip.set_fps(15) # Lower FPS for slideshow-style
# Process audio
final_audio = tts_clip
# Add background music if available and enabled
if hasattr(self, 'enable_music') and self.enable_music and self.music_file != "none":
music_path = None
if self.music_file == "random":
music_path = choose_random_music()
elif os.path.exists(os.path.join(MUSIC_DIR, self.music_file)):
music_path = os.path.join(MUSIC_DIR, self.music_file)
if music_path and os.path.exists(music_path):
self.log(f"Adding background music: {music_path}")
try:
music_clip = AudioFileClip(music_path)
# Loop music if it's shorter than the video
if music_clip.duration < max_duration:
num_loops = int(np.ceil(max_duration / music_clip.duration))
music_clip = concatenate_audioclips([music_clip] * num_loops)
# Trim music if it's longer than the video
music_clip = music_clip.subclip(0, max_duration)
# Set music volume
music_volume = getattr(self, 'music_volume', 0.1)
music_clip = music_clip.volumex(music_volume)
# Combine with TTS audio
final_audio = CompositeAudioClip([tts_clip, music_clip])
except Exception as e:
self.log(warning(f"Error processing music: {str(e)}"))
# Set final audio
final_clip = final_clip.set_audio(final_audio)
# Add subtitles if enabled - process more efficiently
if self.subtitles_enabled and hasattr(self, 'subtitle_data'):
self.log("Adding subtitles (optimized)")
subtitle_clips = self.create_subtitle_clip(self.subtitle_data, (720, 1280)) # Match new resolution
if subtitle_clips:
final_clip = CompositeVideoClip([final_clip] + subtitle_clips)
# Write final video with optimized settings
self.log("Writing final video file (optimized encoding)")
final_clip.write_videofile(
output_path,
fps=15, # Lower FPS for slideshow-style
codec="libx264",
audio_codec="aac",
threads=8, # More threads for faster encoding
preset="ultrafast", # Fastest encoding preset
ffmpeg_params=["-crf", "28"] # Lower quality for speed
)
# Clean up temporary directory
import shutil
try:
shutil.rmtree(temp_dir, ignore_errors=True)
except Exception:
pass
self.log(success(f"Video saved to: {output_path}"))
return output_path
except Exception as e:
error_msg = f"Error combining video: {str(e)}"
self.log(error(error_msg))
raise Exception(error_msg)
def generate_video(self) -> dict:
"""Generate complete video with all components."""
try:
self.log("Starting video generation process")
# Create a unique folder with sequential numbering
folder_num = 1
# Check existing folders to find the latest number
if os.path.exists(STORAGE_DIR):
existing_folders = [d for d in os.listdir(STORAGE_DIR) if os.path.isdir(os.path.join(STORAGE_DIR, d))]
numbered_folders = []
for folder in existing_folders:
try:
# Extract folder number from format "N_UUID"
if "_" in folder:
num = int(folder.split("_")[0])
numbered_folders.append(num)
except (ValueError, IndexError):
continue
if numbered_folders:
folder_num = max(numbered_folders) + 1
folder_id = f"{folder_num}_{str(uuid.uuid4())}"
self.generation_folder = os.path.join(STORAGE_DIR, folder_id)
os.makedirs(self.generation_folder, exist_ok=True)
self.log(f"Created generation folder: {self.generation_folder}")
try:
# Step 1: Generate topic
self.log("Generating topic")
self.generate_topic()
# Step 2: Generate script
self.progress(0.1, desc="Creating script")
self.log("Generating script")
self.generate_script()
# Step 3: Generate metadata
self.progress(0.2, desc="Creating metadata")
self.log("Generating metadata")
self.generate_metadata()
# Step 4: Generate image prompts
self.progress(0.3, desc="Creating image prompts")
self.log("Generating image prompts")
self.generate_prompts()
# Step 5: Generate images
self.progress(0.4, desc="Generating images")
self.log("Generating images")
for i, prompt in enumerate(self.image_prompts, 1):
self.progress(0.4 + 0.2 * (i / len(self.image_prompts)),
desc=f"Generating image {i}/{len(self.image_prompts)}")
self.log(f"Generating image {i}/{len(self.image_prompts)}")
self.generate_image(prompt)
# Step 6: Generate speech
self.progress(0.6, desc="Creating speech")
self.log("Generating speech")
self.generate_speech(self.script)
# Step 7: Generate subtitles
self.progress(0.7, desc="Generating subtitles")
if self.subtitles_enabled and hasattr(self, 'tts_path') and os.path.exists(self.tts_path):
self.subtitle_data = self.generate_subtitles(self.tts_path)
# Save subtitles to generation folder
if self.subtitle_data:
try:
# Save word-level subtitles
if 'wordlevel' in self.subtitle_data:
word_subtitles_path = os.path.join(self.generation_folder, "word_subtitles.json")
with open(word_subtitles_path, 'w') as f:
json.dump(self.subtitle_data['wordlevel'], f, indent=2)
self.log(f"Saved word-level subtitles to: {word_subtitles_path}")
# Save line-level subtitles
if 'linelevel' in self.subtitle_data:
line_subtitles_path = os.path.join(self.generation_folder, "line_subtitles.json")
with open(line_subtitles_path, 'w') as f:
json.dump(self.subtitle_data['linelevel'], f, indent=2)
self.log(f"Saved line-level subtitles to: {line_subtitles_path}")
except Exception as e:
self.log(warning(f"Error saving subtitles to generation folder: {str(e)}"))
# Step 8: Save content.txt with all metadata and generation info
self.progress(0.75, desc="Saving generation data")
try:
content_path = os.path.join(self.generation_folder, "content.txt")
with open(content_path, 'w', encoding='utf-8') as f:
f.write(f"NICHE: {self.niche}\n\n")
f.write(f"LANGUAGE: {self.language}\n\n")
f.write(f"GENERATED TOPIC: {self.subject}\n\n")
f.write(f"GENERATED SCRIPT:\n{self.script}\n\n")
f.write(f"GENERATED PROMPTS:\n")
for i, prompt in enumerate(self.image_prompts, 1):
f.write(f"{i}. {prompt}\n")
f.write("\n")
f.write(f"GENERATED METADATA:\n")
for key, value in self.metadata.items():
f.write(f"{key}: {value}\n")
self.log(f"Saved content.txt to: {content_path}")
except Exception as e:
self.log(warning(f"Error saving content.txt: {str(e)}"))
# Step 9: Combine all elements into final video with optimized rendering
self.progress(0.8, desc="Creating final video")
self.log("Combining all elements into final video (optimized rendering)")
# Clear memory before video rendering
import gc
gc.collect()
path = self.combine()
self.progress(0.95, desc="Finalizing")
self.log(f"Video generation complete. Files saved in: {self.generation_folder}")
# Return the result
return {
'video_path': path,
'generation_folder': self.generation_folder,
'title': self.metadata['title'],
'description': self.metadata['description'],
'subject': self.subject,
'script': self.script,
'logs': self.logs
}
except Exception as e:
error_msg = f"Error during video generation step: {str(e)}"
self.log(error(error_msg))
# Try to clean up any resources
self.cleanup_resources()
raise Exception(error_msg)
except Exception as e:
error_msg = f"Error during video generation: {str(e)}"
self.log(error(error_msg))
raise Exception(error_msg)
def cleanup_resources(self):
"""Clean up any resources to prevent memory leaks."""
try:
# Force close any remaining ImageMagick processes
import psutil
for proc in psutil.process_iter():
try:
# Check if process name contains ImageMagick or ffmpeg
if 'magick' in proc.name().lower() or 'ffmpeg' in proc.name().lower():
proc.kill()
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass
# Force garbage collection
import gc
gc.collect()
except Exception as e:
self.log(warning(f"Error during resource cleanup: {str(e)}"))
pass
# Data for dynamic dropdowns
def get_text_generator_models(generator):
"""Get available models for the selected text generator."""
models = {
"gemini": [
"gemini-2.0-flash",
"gemini-2.0-flash-lite",
"gemini-1.5-flash",
"gemini-1.5-flash-8b",
"gemini-1.5-pro"
],
"g4f": [
"gpt-4",
"gpt-4o",
"gpt-3.5-turbo",
"llama-3-70b-chat",
"claude-3-opus-20240229",
"claude-3-sonnet-20240229",
"claude-3-haiku-20240307"
],
"openai": [
"gpt-4o",
"gpt-4-turbo",
"gpt-3.5-turbo"
]
}
return models.get(generator, ["default"])
def get_image_generator_models(generator):
"""Get available models for the selected image generator."""
models = {
"prodia": [
"sdxl",
"realvisxl",
"juggernaut",
"dreamshaper",
"dalle"
],
"hercai": [
"v1",
"v2",
"v3",
"lexica"
],
"g4f": [
"flux",
"dall-e-3",
"dall-e-2",
"midjourney"
],
"segmind": [
"sdxl-turbo",
"realistic-vision",
"sd3"
],
"pollinations": [
"default"
]
}
return models.get(generator, ["default"])
def get_tts_voices(engine):
"""Get available voices for the selected TTS engine."""
voices = {
"elevenlabs": [
"Sarah", # Female, American accent
"Brian", # Male, British accent
"Lily", # Female, British accent
"Monika Sogam", # Female, Indian accent
"George", # Male, American accent
"River", # Female, American accent
"Matilda", # Female, British accent
"Will", # Male, American accent
"Jessica" # Female, American accent
],
"openai": [
"alloy",
"echo",
"fable",
"onyx",
"nova",
"shimmer"
],
"edge": [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-GB-SoniaNeural",
"en-AU-NatashaNeural"
],
"gtts": [
"en",
"es",
"fr",
"de",
"it",
"pt",
"ru",
"ja",
"zh",
"hi"
]
}
return voices.get(engine, ["default"])
# Create the Gradio interface
def create_interface():
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", radius_size="lg"), title="YouTube Shorts Generator") as demo:
with gr.Row():
gr.Markdown(
"""
# π± YouTube Shorts Generator
Generate engaging YouTube Shorts videos with AI. Just provide a niche and language to get started!
"""
)
with gr.Row(equal_height=True):
# Left panel: Content Settings
with gr.Column(scale=2, min_width=500):
with gr.Group():
gr.Markdown("### π Content")
niche = gr.Textbox(
label="Niche/Topic",
placeholder="What's your video about?",
value="Historical Facts"
)
language = gr.Dropdown(
choices=["English", "Spanish", "French", "German", "Italian", "Portuguese",
"Russian", "Japanese", "Chinese", "Hindi"],
label="Language",
value="English"
)
# Generator Settings
with gr.Group():
gr.Markdown("### π§ Generator Settings")
with gr.Tabs():
with gr.TabItem("Text"):
text_gen = gr.Dropdown(
choices=["g4f", "gemini", "openai"],
label="Text Generator",
value="g4f"
)
text_model = gr.Dropdown(
choices=get_text_generator_models("g4f"),
label="Text Model",
value="gpt-4"
)
with gr.TabItem("Image"):
image_gen = gr.Dropdown(
choices=["g4f", "prodia", "hercai", "segmind", "pollinations"],
label="Image Generator",
value="g4f"
)
image_model = gr.Dropdown(
choices=get_image_generator_models("g4f"),
label="Image Model",
value="flux"
)
with gr.TabItem("Speech"):
tts_engine = gr.Dropdown(
choices=["edge", "elevenlabs", "gtts", "openai"],
label="Speech Generator",
value="edge"
)
tts_voice = gr.Dropdown(
choices=get_tts_voices("edge"),
label="Voice",
value="en-US-AriaNeural"
)
with gr.TabItem("Audio"):
enable_music = gr.Checkbox(label="Enable Background Music", value=True)
# Fix for music_file - Get available music and set proper default
music_choices = get_music_files()
default_music = "none" if "random" not in music_choices else "random"
music_file = gr.Dropdown(
choices=music_choices,
label="Background Music",
value=default_music,
interactive=True
)
music_volume = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.05,
label="Background Music Volume"
)
with gr.TabItem("Subtitles"):
subtitles_enabled = gr.Checkbox(label="Enable Subtitles", value=True)
highlighting_enabled = gr.Checkbox(label="Enable Word Highlighting", value=True)
subtitle_font = gr.Dropdown(
choices=get_font_files(),
label="Font",
value="random"
)
with gr.Row():
font_size = gr.Slider(
minimum=40,
maximum=120,
value=80,
step=5,
label="Font Size"
)
subtitle_position = gr.Dropdown(
choices=["bottom", "middle", "top"],
label="Position",
value="bottom"
)
with gr.Row():
text_color = gr.ColorPicker(label="Text Color", value="#FFFFFF")
highlight_color = gr.ColorPicker(label="Highlight Color", value="#0000FF")
# Generate button
generate_btn = gr.Button("π¬ Generate Video", variant="primary", size="lg")
# Right panel: Output display
with gr.Column(scale=1, min_width=300):
with gr.Tabs():
with gr.TabItem("Video"):
# Larger video preview with proper mobile proportions
video_output = gr.Video(label="Generated Video", height=580, width=330)
with gr.TabItem("Metadata"):
title_output = gr.Textbox(label="Title", lines=2)
description_output = gr.Textbox(label="Description", lines=4)
script_output = gr.Textbox(label="Script", lines=8)
# API Keys section as a tab
with gr.TabItem("π API Keys"):
gemini_api_key = gr.Textbox(
label="Gemini API Key",
type="password",
value=os.environ.get("GEMINI_API_KEY", "")
)
assemblyai_api_key = gr.Textbox(
label="AssemblyAI API Key",
type="password",
value=os.environ.get("ASSEMBLYAI_API_KEY", "")
)
elevenlabs_api_key = gr.Textbox(
label="ElevenLabs API Key",
type="password",
value=os.environ.get("ELEVENLABS_API_KEY", "")
)
segmind_api_key = gr.Textbox(
label="Segmind API Key",
type="password",
value=os.environ.get("SEGMIND_API_KEY", "")
)
openai_api_key = gr.Textbox(
label="OpenAI API Key",
type="password",
value=os.environ.get("OPENAI_API_KEY", "")
)
with gr.TabItem("Log"):
log_output = gr.Textbox(label="Process Log", lines=15, max_lines=100)
# Dynamic dropdown updates
def update_text_models(generator):
return gr.Dropdown(choices=get_text_generator_models(generator))
def update_image_models(generator):
return gr.Dropdown(choices=get_image_generator_models(generator))
def update_tts_voices(engine):
return gr.Dropdown(choices=get_tts_voices(engine))
# Connect the change events
text_gen.change(fn=update_text_models, inputs=text_gen, outputs=text_model)
image_gen.change(fn=update_image_models, inputs=image_gen, outputs=image_model)
tts_engine.change(fn=update_tts_voices, inputs=tts_engine, outputs=tts_voice)
# Main generation function
def generate_youtube_short(niche, language, text_gen, text_model, image_gen, image_model,
tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
subtitle_font, font_size, subtitle_position,
text_color, highlight_color, music_file,
enable_music, music_volume,
gemini_api_key, assemblyai_api_key,
elevenlabs_api_key, segmind_api_key, openai_api_key,
progress=gr.Progress()):
if not niche.strip():
return {
video_output: None,
title_output: "ERROR: Please enter a niche/topic",
description_output: "",
script_output: "",
log_output: "Error: Niche/Topic is required. Please enter a valid topic and try again."
}
# Create API keys dictionary
api_keys = {
'gemini': gemini_api_key,
'assemblyai': assemblyai_api_key,
'elevenlabs': elevenlabs_api_key,
'segmind': segmind_api_key,
'openai': openai_api_key
}
try:
# Initialize YouTube class
yt = YouTube(
niche=niche,
language=language,
text_gen=text_gen,
text_model=text_model,
image_gen=image_gen,
image_model=image_model,
tts_engine=tts_engine,
tts_voice=tts_voice,
subtitle_font=subtitle_font,
font_size=font_size,
text_color=text_color,
highlight_color=highlight_color,
subtitles_enabled=subtitles_enabled,
highlighting_enabled=highlighting_enabled,
subtitle_position=subtitle_position,
music_file=music_file,
enable_music=enable_music,
music_volume=music_volume,
api_keys=api_keys,
progress=progress
)
# Generate video
result = yt.generate_video()
# Check if video was successfully created
if not result or not result.get('video_path') or not os.path.exists(result.get('video_path', '')):
return {
video_output: None,
title_output: "ERROR: Video generation failed",
description_output: "",
script_output: "",
log_output: "\n".join(yt.logs)
}
return {
video_output: result['video_path'],
title_output: result['title'],
description_output: result['description'],
script_output: result['script'],
log_output: "\n".join(result['logs'])
}
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n\n{traceback.format_exc()}"
return {
video_output: None,
title_output: f"ERROR: {str(e)}",
description_output: "",
script_output: "",
log_output: error_details
}
# Connect the button click event
generate_btn.click(
fn=generate_youtube_short,
inputs=[
niche, language, text_gen, text_model, image_gen, image_model,
tts_engine, tts_voice, subtitles_enabled, highlighting_enabled,
subtitle_font, font_size, subtitle_position, text_color, highlight_color, music_file,
enable_music, music_volume, gemini_api_key, assemblyai_api_key, elevenlabs_api_key, segmind_api_key, openai_api_key
],
outputs=[video_output, title_output, description_output, script_output, log_output]
)
# Add examples
music_choices = get_music_files()
default_music = "none" if "random" not in music_choices else "random"
gr.Examples(
[
["Historical Facts", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#0000FF", default_music, True, 0.1],
["Cooking Tips", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-AriaNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#FF0000", default_music, True, 0.1],
["Technology News", "English", "g4f", "gpt-4", "g4f", "flux", "edge", "en-US-GuyNeural", True, True, "default", 80, "bottom", "#FFFFFF", "#00FF00", default_music, True, 0.1],
],
[niche, language, text_gen, text_model, image_gen, image_model, tts_engine, tts_voice,
subtitles_enabled, highlighting_enabled, subtitle_font, font_size,
subtitle_position, text_color, highlight_color, music_file, enable_music, music_volume],
label="Quick Start Templates"
)
return demo
# Create and launch the interface
if __name__ == "__main__":
# Create necessary directories
os.makedirs(STATIC_DIR, exist_ok=True)
os.makedirs(MUSIC_DIR, exist_ok=True)
os.makedirs(FONTS_DIR, exist_ok=True)
os.makedirs(STORAGE_DIR, exist_ok=True)
# Launch the app
demo = create_interface()
demo.launch() |