File size: 7,648 Bytes
92218bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# !pip install gr-nlp-toolkit

from gr_nlp_toolkit import Pipeline

# Instantiate the Pipeline
nlp_pos_ner_dp_with_g2g = Pipeline("pos,ner,dp,g2g")


def greeklish_to_greek(text: str) -> str:
    """
    Convert Greeklish (Greek written with Latin characters) to Greek. ("larisa" -> "λαρισα")

    Args:
        text (str): The Greeklish text to convert.

    Returns:
        str: The transliterated Greek text.

    Examples:
        >>> greeklish_to_greek("H thessaloniki einai wraia polh")
        'η θεσσαλονικη ειναι ωραια πολη'
    """
    doc = nlp_pos_ner_dp_with_g2g(text)
    return " ".join([token.text for token in doc.tokens])


def process_ner(text: str) -> dict:
    """
    Process text to extract Named Entity Recognition (NER) information.

    Args:
        text (str): The text to process.

    Returns:
        dict: A dictionary with the text and the NER value.

    Examples:
        >>> process_ner("Η Αργεντινή κέρδισε το Παγκόσμιο Κύπελλο το 2022")
        {
            'η': 'O',
            'αργεντινη': 'S-ORG',
            'κερδισε': 'O',
            'το': 'O',
            'παγκοσμιο': 'B-EVENT',
            'κυπελλο': 'E-EVENT',
            'το': 'O',
            '2022': 'S-DATE'
        }

    NER Possible Labels List:
        ner_labels = [
            'O', 'S-GPE', 'S-ORG', 'S-CARDINAL', 'B-ORG', 'E-ORG', 'B-DATE', 'E-DATE', 'S-NORP',
            'B-GPE', 'E-GPE', 'S-EVENT', 'S-DATE', 'S-PRODUCT', 'S-LOC', 'I-ORG', 'S-PERSON',
            'S-ORDINAL', 'B-PERSON', 'I-PERSON', 'E-PERSON', 'B-LAW', 'I-LAW', 'E-LAW', 'B-MONEY',
            'I-MONEY', 'E-MONEY', 'B-EVENT', 'I-EVENT', 'E-EVENT', 'B-FAC', 'E-FAC', 'I-DATE',
            'S-PERCENT', 'B-QUANTITY', 'E-QUANTITY', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'E-WORK_OF_ART',
            'I-FAC', 'S-LAW', 'S-TIME', 'B-LOC', 'E-LOC', 'I-LOC', 'S-FAC', 'B-TIME', 'E-TIME',
            'S-WORK_OF_ART', 'B-PRODUCT', 'E-PRODUCT', 'B-CARDINAL', 'E-CARDINAL', 'S-MONEY',
            'S-LANGUAGE', 'I-TIME', 'I-PRODUCT', 'I-GPE', 'I-QUANTITY', 'B-NORP', 'E-NORP',
            'S-QUANTITY', 'B-PERCENT', 'I-PERCENT', 'E-PERCENT', 'I-CARDINAL', 'B-ORDINAL',
            'I-ORDINAL', 'E-ORDINAL'
        ]
    """
    doc = nlp_pos_ner_dp_with_g2g(text)
    ner_dict = {token.text: token.ner for token in doc.tokens}
    return ner_dict


def process_pos(text: str) -> dict:
    """
    Process text to extract Part-of-Speech information (UPOS tags and morphological features).

    # Complete list of UPOS (https://universaldependencies.org/u/pos/ & https://github.com/nlpaueb/gr-nlp-toolkit/blob/main/gr_nlp_toolkit/configs/pos_labels.py)
        ADJ: adjective
        ADP: adposition
        ADV: adverb
        AUX: auxiliary
        CCONJ: coordinating conjunction
        DET: determiner
        INTJ: interjection
        NOUN: noun
        NUM: numeral
        PART: particle
        PRON: pronoun
        PROPN: proper noun
        PUNCT: punctuation
        SCONJ: subordinating conjunction
        SYM: symbol
        VERB: verb
        X: other

    # Complete list of the morphological features can be found here: (https://github.com/nlpaueb/gr-nlp-toolkit/blob/main/gr_nlp_toolkit/configs/pos_labels.py
    Due to the large number of features, only the most common ones are listed here:
        - Aspect
        - Case
        - Definite
        - Mood
        - Number
        - Person
        - PronType
        - Tense
        - Gender
        - VerbForm
        - Voice

    Args:
        text (str): The text to process.

    Returns:
        dict: A dictionary with the text and the POS information, containing UPOS and morphological features as keys.

    Examples:
         >>> process_pos("Μου αρέσει να διαβάζω τα post του Andrew Ng στο Twitter.")
        {
            'μου': {'UPOS': 'PRON', 'Morphological_Features': {'Case': 'Gen', 'Gender': 'Masc', 'Number': 'Sing', 'Person': '1', 'Poss': '_', 'PronType': 'Prs'}},
            'αρεσει': {'UPOS': 'VERB', 'Morphological_Features': {'Aspect': 'Imp', 'Case': '_', 'Gender': '_', 'Mood': 'Ind', 'Number': 'Sing', 'Person': '3', 'Tense': 'Pres', 'VerbForm': 'Fin', 'Voice': 'Act'}},
            'να': {'UPOS': 'AUX', 'Morphological_Features': {'Aspect': '_', 'Mood': '_', 'Number': '_', 'Person': '_', 'Tense': '_', 'VerbForm': '_', 'Voice': '_'}},
            'διαβαζω': {'UPOS': 'VERB', 'Morphological_Features': {'Aspect': 'Imp', 'Case': '_', 'Gender': '_', 'Mood': 'Ind', 'Number': 'Sing', 'Person': '1', 'Tense': 'Pres', 'VerbForm': 'Fin', 'Voice': 'Act'}},
            'τα': {'UPOS': 'DET', 'Morphological_Features': {'Case': 'Acc', 'Definite': 'Def', 'Gender': 'Neut', 'Number': 'Plur', 'PronType': 'Art'}},
            'post': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}},
            'του': {'UPOS': 'DET', 'Morphological_Features': {'Case': 'Gen', 'Definite': 'Def', 'Gender': 'Masc', 'Number': 'Sing', 'PronType': 'Art'}},
            'andrew': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}},
            'ng': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}},
            'στο': {'UPOS': '_', 'Morphological_Features': {}},
            'twitter': {'UPOS': 'X', 'Morphological_Features': {'Foreign': 'Yes'}},
            '.': {'UPOS': 'PUNCT', 'Morphological_Features': {}}
        }
    """
    doc = nlp_pos_ner_dp_with_g2g(text)
    pos_dict = {
        token.text: {"UPOS": token.upos, "Morphological_Features": token.feats}
        for token in doc.tokens
    }
    return pos_dict


def process_dp(text: str) -> dict:
    """
    Process text to extract Dependency Parsing information.

    This method analyzes the given text and returns dependency parsing information for each word,
    including its syntactic head and dependency relation.

    Args:
        text (str): The text to process.

    Returns:
        dict: A dictionary where each key is a word from the input text, and the value is another
            dictionary containing:
                - 'Head': The position of the syntactic head of the word (0 indicates the root).
                - 'Deprel': The dependency relation to the head.


    Examples:
        >>> process_dp("Προτιμώ την πρωινή πτήση από την Αθήνα στη Θεσσαλονίκη.")
        {
            'προτιμω': {'Head': 0, 'Deprel': 'root'},
            'την': {'Head': 4, 'Deprel': 'det'},
            'πρωινη': {'Head': 4, 'Deprel': 'amod'},
            'πτηση': {'Head': 1, 'Deprel': 'obj'},
            'απο': {'Head': 7, 'Deprel': 'case'},
            'την': {'Head': 7, 'Deprel': 'det'},
            'αθηνα': {'Head': 4, 'Deprel': 'nmod'},
            'στη': {'Head': 9, 'Deprel': 'case'},
            'θεσσαλονικη': {'Head': 4, 'Deprel': 'nmod'},
            '.': {'Head': 1, 'Deprel': 'punct'}
        }

    Dependency Parsing Possible Labels List:
        dp_labels = [
            'obl', 'obj', 'dep', 'mark', 'case', 'flat', 'nummod', 'obl:arg', 'punct', 'cop',
            'acl:relcl', 'expl', 'nsubj', 'csubj:pass', 'root', 'advmod', 'nsubj:pass', 'ccomp',
            'conj', 'amod', 'xcomp', 'aux', 'appos', 'csubj', 'fixed', 'nmod', 'iobj', 'parataxis',
            'orphan', 'det', 'advcl', 'vocative', 'compound', 'cc', 'discourse', 'acl', 'obl:agent'
        ]
    """
    doc = nlp_pos_ner_dp_with_g2g(text)
    dp_dict = {
        token.text: {"Head": token.head, "Deprel": token.deprel} for token in doc.tokens
    }
    return dp_dict