Spaces:
Sleeping
Sleeping
File size: 5,679 Bytes
10e9b7d eccf8e4 3c4371f 182cf83 10e9b7d 182cf83 3db6293 9efd6bd e80aab9 182cf83 31243f4 182cf83 31243f4 182cf83 e85b640 182cf83 e85b640 182cf83 4021bf3 9efd6bd 4e281a3 9efd6bd 7d65c66 3c4371f 9efd6bd 7e4a06b 31243f4 e80aab9 4e281a3 31243f4 182cf83 31243f4 182cf83 3c4371f 4e281a3 eccf8e4 31243f4 7d65c66 31243f4 4e281a3 7d65c66 4e281a3 e80aab9 4e281a3 7d65c66 31243f4 7d65c66 31243f4 4e281a3 31243f4 4e281a3 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 4e281a3 7d65c66 4e281a3 182cf83 4e281a3 e80aab9 182cf83 4e281a3 e514fd7 182cf83 4e281a3 182cf83 4e281a3 e80aab9 182cf83 4e281a3 182cf83 7e4a06b 182cf83 31243f4 182cf83 4e281a3 e80aab9 e23ab90 9efd6bd e23ab90 e80aab9 4e281a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import gradio as gr
import requests
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL):
print("Initializing BasicAgent with LLM...")
self.hf_token = hf_token
self.model_name = model_name
self.llm = None
if hf_token:
try:
print(f"Loading model: {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
self.llm = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device_map="auto"
)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise Exception(f"Could not load model: {e}")
else:
print("No HF token provided - agent will use default answers")
def __call__(self, question: str) -> str:
if not self.llm:
return "This is a default answer (no LLM initialized)"
try:
print(f"Generating answer for question: {question[:50]}...")
response = self.llm(
question,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9
)
return response[0]['generated_text']
except Exception as e:
print(f"Error generating answer: {e}")
return f"Error generating answer: {e}"
def run_and_submit_all(hf_token: str, request: gr.Request):
"""Main function to run evaluation and submit answers"""
# Get user info from the request
if not request.username:
return "Please Login to Hugging Face with the button.", None
username = request.username
space_id = os.getenv("SPACE_ID")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Initialize agent
try:
agent = BasicAgent(hf_token=hf_token)
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Process questions
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Submit answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# LLM Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
2. Enter your token below
3. Log in to your Hugging Face account
4. Click 'Run Evaluation & Submit All Answers'
""")
with gr.Row():
hf_token_input = gr.Textbox(
label="Hugging Face API Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
info="Required for LLM access"
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status", lines=5)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=[hf_token_input],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch() |