File size: 4,304 Bytes
3978e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import warnings

import torch
import torch.backends.cuda
from torch import nn
from torch.nn.modules import rnn
from torch.utils.checkpoint import checkpoint_sequential


class TimeFrequencyModellingModule(nn.Module):
    def __init__(self) -> None:
        super().__init__()


class ResidualRNN(nn.Module):
    def __init__(
        self,
        emb_dim: int,
        rnn_dim: int,
        bidirectional: bool = True,
        rnn_type: str = "LSTM",
        use_batch_trick: bool = True,
        use_layer_norm: bool = True,
    ) -> None:
        # n_group is the size of the 2nd dim
        super().__init__()

        assert use_layer_norm
        assert use_batch_trick

        self.use_layer_norm = use_layer_norm
        self.norm = nn.LayerNorm(emb_dim)
        self.rnn = rnn.__dict__[rnn_type](
            input_size=emb_dim,
            hidden_size=rnn_dim,
            num_layers=1,
            batch_first=True,
            bidirectional=bidirectional,
        )

        self.fc = nn.Linear(
            in_features=rnn_dim * (2 if bidirectional else 1), out_features=emb_dim
        )

        self.use_batch_trick = use_batch_trick
        if not self.use_batch_trick:
            warnings.warn("NOT USING BATCH TRICK IS EXTREMELY SLOW!!")

    def forward(self, z):
        # z = (batch, n_uncrossed, n_across, emb_dim)

        z0 = torch.clone(z)
        z = self.norm(z)

        batch, n_uncrossed, n_across, emb_dim = z.shape
        z = torch.reshape(z, (batch * n_uncrossed, n_across, emb_dim))
        z = self.rnn(z)[0]
        z = torch.reshape(z, (batch, n_uncrossed, n_across, -1))

        z = self.fc(z)  # (batch, n_uncrossed, n_across, emb_dim)

        z = z + z0

        return z


class Transpose(nn.Module):
    def __init__(self, dim0: int, dim1: int) -> None:
        super().__init__()
        self.dim0 = dim0
        self.dim1 = dim1

    def forward(self, z):
        return z.transpose(self.dim0, self.dim1)


class SeqBandModellingModule(TimeFrequencyModellingModule):
    def __init__(
        self,
        n_modules: int = 12,
        emb_dim: int = 128,
        rnn_dim: int = 256,
        bidirectional: bool = True,
        rnn_type: str = "LSTM",
        parallel_mode=False,
    ) -> None:
        super().__init__()

        self.n_modules = n_modules

        if parallel_mode:
            self.seqband = nn.ModuleList([])
            for _ in range(n_modules):
                self.seqband.append(
                    nn.ModuleList(
                        [
                            ResidualRNN(
                                emb_dim=emb_dim,
                                rnn_dim=rnn_dim,
                                bidirectional=bidirectional,
                                rnn_type=rnn_type,
                            ),
                            ResidualRNN(
                                emb_dim=emb_dim,
                                rnn_dim=rnn_dim,
                                bidirectional=bidirectional,
                                rnn_type=rnn_type,
                            ),
                        ]
                    )
                )
        else:
            seqband = []
            for _ in range(2 * n_modules):
                seqband += [
                    ResidualRNN(
                        emb_dim=emb_dim,
                        rnn_dim=rnn_dim,
                        bidirectional=bidirectional,
                        rnn_type=rnn_type,
                    ),
                    Transpose(1, 2),
                ]

            self.seqband = nn.Sequential(*seqband)

        self.parallel_mode = parallel_mode

    def forward(self, z):
        # z = (batch, n_bands, n_time, emb_dim)

        if self.parallel_mode:
            for sbm_pair in self.seqband:
                # z: (batch, n_bands, n_time, emb_dim)
                sbm_t, sbm_f = sbm_pair[0], sbm_pair[1]
                zt = sbm_t(z)  # (batch, n_bands, n_time, emb_dim)
                zf = sbm_f(z.transpose(1, 2))  # (batch, n_time, n_bands, emb_dim)
                z = zt + zf.transpose(1, 2)
        else:
            z = checkpoint_sequential(
                self.seqband, self.n_modules, z, use_reentrant=False
            )

        q = z
        return q  # (batch, n_bands, n_time, emb_dim)