File size: 9,608 Bytes
c3eda24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'

import argparse
import time
import librosa
from tqdm.auto import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import torch.nn as nn
from datetime import datetime
import numpy as np
import librosa

# Using the embedded version of Python can also correctly import the utils module.
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)

from utils import demix, get_model_from_config, normalize_audio, denormalize_audio
from utils import prefer_target_instrument, apply_tta, load_start_checkpoint, load_lora_weights

import warnings
warnings.filterwarnings("ignore")


def shorten_filename(filename, max_length=30):
    """
    Shortens a filename to a specified maximum length
    
    Args:
        filename (str): The filename to be shortened
        max_length (int): Maximum allowed length for the filename
    
    Returns:
        str: Shortened filename
    """
    base, ext = os.path.splitext(filename)
    if len(base) <= max_length:
        return filename
    
    # Take first 15 and last 10 characters
    shortened = base[:15] + "..." + base[-10:] + ext
    return shortened

def get_soundfile_subtype(pcm_type, is_float=False):
    """
    PCM türüne göre uygun soundfile subtypei belirle
    
    Args:
        pcm_type (str): PCM türü ('PCM_16', 'PCM_24', 'FLOAT')
        is_float (bool): Float formatı kullanılıp kullanılmayacağı
    
    Returns:
        str: Soundfile subtype
    """
    if is_float:
        return 'FLOAT'
    
    subtype_map = {
        'PCM_16': 'PCM_16',
        'PCM_24': 'PCM_24',
        'FLOAT': 'FLOAT'
    }
    return subtype_map.get(pcm_type, 'FLOAT')

def run_folder(model, args, config, device, verbose: bool = False):
    start_time = time.time()
    model.eval()

    mixture_paths = sorted(glob.glob(os.path.join(args.input_folder, '*.*')))
    sample_rate = getattr(config.audio, 'sample_rate', 44100)

    print(f"Total files found: {len(mixture_paths)}. Using sample rate: {sample_rate}")

    instruments = prefer_target_instrument(config)[:]
    os.makedirs(args.store_dir, exist_ok=True)

    # Dosya sayısını ve progress için değişkenler
    total_files = len(mixture_paths)
    current_file = 0

    # Progress tracking
    for path in mixture_paths:
        try:
            # Dosya işleme başlangıcı
            current_file += 1
            print(f"Processing file {current_file}/{total_files}")
            
            mix, sr = librosa.load(path, sr=sample_rate, mono=False)
        except Exception as e:
            print(f'Cannot read track: {path}')
            print(f'Error message: {str(e)}')
            continue

        mix_orig = mix.copy()
        if 'normalize' in config.inference:
            if config.inference['normalize'] is True:
                mix, norm_params = normalize_audio(mix)

        waveforms_orig = demix(config, model, mix, device, model_type=args.model_type)

        if args.use_tta:
            waveforms_orig = apply_tta(config, model, mix, waveforms_orig, device, args.model_type)

        if args.demud_phaseremix_inst:
            print(f"Demudding track (phase remix - instrumental): {path}")
            instr = 'vocals' if 'vocals' in instruments else instruments[0]
            instruments.append('instrumental_phaseremix')
            if 'instrumental' not in instruments and 'Instrumental' not in instruments:
                mix_modified = mix_orig - 2*waveforms_orig[instr]
                mix_modified_ = mix_modified.copy()
                
                waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type)
                if args.use_tta:
                    waveforms_modified = apply_tta(config, model, mix_modified, waveforms_modified, device, args.model_type)
                
                waveforms_orig['instrumental_phaseremix'] = mix_orig + waveforms_modified[instr]
            else:
                mix_modified = 2*waveforms_orig[instr] - mix_orig
                mix_modified_ = mix_modified.copy()
                
                waveforms_modified = demix(config, model, mix_modified, device, model_type=args.model_type)
                if args.use_tta:
                    waveforms_modified = apply_tta(config, model, mix_modified, waveforms_orig, device, args.model_type)
                
                waveforms_orig['instrumental_phaseremix'] = mix_orig + mix_modified_ - waveforms_modified[instr]

        if args.extract_instrumental:
            instr = 'vocals' if 'vocals' in instruments else instruments[0]
            waveforms_orig['instrumental'] = mix_orig - waveforms_orig[instr]
            if 'instrumental' not in instruments:
                instruments.append('instrumental')

        for instr in instruments:
            estimates = waveforms_orig[instr]
            if 'normalize' in config.inference:
                if config.inference['normalize'] is True:
                    estimates = denormalize_audio(estimates, norm_params)

            # Dosya formatı ve PCM türü belirleme
            is_float = getattr(args, 'export_format', '').startswith('wav FLOAT')
            codec = 'flac' if getattr(args, 'flac_file', False) else 'wav'
            
            # Subtype belirleme
            if codec == 'flac':
                subtype = get_soundfile_subtype(args.pcm_type, is_float)
            else:
                subtype = get_soundfile_subtype('FLOAT', is_float)

            shortened_filename = shorten_filename(os.path.basename(path))
            output_filename = f"{shortened_filename}_{instr}.{codec}"
            output_path = os.path.join(args.store_dir, output_filename)
        
            sf.write(output_path, estimates.T, sr, subtype=subtype)

        # Progress yüzdesi hesaplama
        progress_percent = int((current_file / total_files) * 100)
        print(f"Progress: {progress_percent}%")

    print(f"Elapsed time: {time.time() - start_time:.2f} seconds.")

def proc_folder(args):
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_type", type=str, default='mdx23c', 
                        help="Model type (bandit, bs_roformer, mdx23c, etc.)")
    parser.add_argument("--config_path", type=str, help="Path to config file")
    parser.add_argument("--demud_phaseremix_inst", action='store_true', help="demud_phaseremix_inst")
    parser.add_argument("--start_check_point", type=str, default='', 
                        help="Initial checkpoint to valid weights")
    parser.add_argument("--input_folder", type=str, help="Folder with mixtures to process")
    parser.add_argument("--audio_path", type=str, help="Path to a single audio file to process")  # Yeni argüman
    parser.add_argument("--store_dir", default="", type=str, help="Path to store results")
    parser.add_argument("--device_ids", nargs='+', type=int, default=0, 
                        help='List of GPU IDs')
    parser.add_argument("--extract_instrumental", action='store_true', 
                        help="Invert vocals to get instrumental if provided")
    parser.add_argument("--force_cpu", action='store_true', 
                        help="Force the use of CPU even if CUDA is available")
    parser.add_argument("--flac_file", action='store_true', 
                        help="Output flac file instead of wav")
    parser.add_argument("--export_format", type=str, 
                        choices=['wav FLOAT', 'flac PCM_16', 'flac PCM_24'], 
                        default='flac PCM_24', 
                        help="Export format and PCM type")
    parser.add_argument("--pcm_type", type=str, 
                        choices=['PCM_16', 'PCM_24'], 
                        default='PCM_24', 
                        help="PCM type for FLAC files")
    parser.add_argument("--use_tta", action='store_true', 
                        help="Enable test time augmentation")
    parser.add_argument("--lora_checkpoint", type=str, default='', 
                        help="Initial checkpoint to LoRA weights")

    # Argümanları ayrıştır
    parsed_args = parser.parse_args(args)

    # Burada parsed_args.audio_path ile ses dosyası yolunu kullanabilirsiniz
    print(f"Audio path provided: {parsed_args.audio_path}")
    
    if args is None:
        args = parser.parse_args()
    else:
        args = parser.parse_args(args)

    # Cihaz seçimi
    device = "cpu"
    if args.force_cpu:
        device = "cpu"
    elif torch.cuda.is_available():
        print('CUDA is available, use --force_cpu to disable it.')
        device = f'cuda:{args.device_ids[0]}' if type(args.device_ids) == list else f'cuda:{args.device_ids}'
    elif torch.backends.mps.is_available():
         device = "mps"

    print("Using device: ", device)

    model_load_start_time = time.time()
    torch.backends.cudnn.benchmark = True

    model, config = get_model_from_config(args.model_type, args.config_path)

    if args.start_check_point != '':
        load_start_checkpoint(args, model, type_='inference')

    print("Instruments: {}".format(config.training.instruments))

    # Çoklu CUDA GPU kullanımı
    if type(args.device_ids) == list and len(args.device_ids) > 1 and not args.force_cpu:
        model = nn.DataParallel(model, device_ids=args.device_ids)

    model = model.to(device)

    print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))

    run_folder(model, args, config, device, verbose=True)


if __name__ == "__main__":
    proc_folder(None)