File size: 11,739 Bytes
c3eda24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import glob
import subprocess
import time
import gc
import shutil
import sys
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from datetime import datetime
from helpers import INPUT_DIR, OLD_OUTPUT_DIR, ENSEMBLE_DIR, AUTO_ENSEMBLE_TEMP, move_old_files, clear_directory, BASE_DIR
from model import get_model_config
import torch
import yaml
import gradio as gr
import threading
import random
import librosa
import soundfile as sf
import numpy as np
import requests
import json
import locale
import re
import psutil
import concurrent.futures
from tqdm import tqdm
from google.oauth2.credentials import Credentials
import tempfile
from urllib.parse import urlparse, quote
import gdown
from clean_model import clean_model_name, shorten_filename, clean_filename
import warnings
warnings.filterwarnings("ignore")
# BASE_DIR'i dinamik olarak güncel dizine ayarla
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # processing.py'nin bulunduğu dizin
INFERENCE_PATH = os.path.join(BASE_DIR, "inference.py") # inference.py'nin tam yolu
OUTPUT_DIR = os.path.join(BASE_DIR, "output") # Çıkış dizini BASE_DIR/output olarak güncellendi
AUTO_ENSEMBLE_OUTPUT = os.path.join(BASE_DIR, "ensemble_output") # Ensemble çıkış dizini
def extract_model_name(full_model_string):
"""Extracts the clean model name from a string."""
if not full_model_string:
return ""
cleaned = str(full_model_string)
if ' - ' in cleaned:
cleaned = cleaned.split(' - ')[0]
emoji_prefixes = ['✅ ', '👥 ', '🗣️ ', '🏛️ ', '🔇 ', '🔉 ', '🎬 ', '🎼 ', '✅(?) ']
for prefix in emoji_prefixes:
if cleaned.startswith(prefix):
cleaned = cleaned[len(prefix):]
return cleaned.strip()
def run_command_and_process_files(model_type, config_path, start_check_point, INPUT_DIR, OUTPUT_DIR, extract_instrumental, use_tta, demud_phaseremix_inst, clean_model):
try:
# inference.py'nin tam yolunu kullan
cmd_parts = [
"python", INFERENCE_PATH,
"--model_type", model_type,
"--config_path", config_path,
"--start_check_point", start_check_point,
"--input_folder", INPUT_DIR,
"--store_dir", OUTPUT_DIR,
]
if extract_instrumental:
cmd_parts.append("--extract_instrumental")
if use_tta:
cmd_parts.append("--use_tta")
if demud_phaseremix_inst:
cmd_parts.append("--demud_phaseremix_inst")
process = subprocess.Popen(
cmd_parts,
cwd=BASE_DIR, # Çalışma dizini olarak BASE_DIR kullan
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
bufsize=1,
universal_newlines=True
)
for line in process.stdout:
print(line.strip())
for line in process.stderr:
print(line.strip())
process.wait()
filename_model = clean_model_name(clean_model)
def rename_files_with_model(folder, filename_model):
for filename in sorted(os.listdir(folder)):
file_path = os.path.join(folder, filename)
if not any(filename.lower().endswith(ext) for ext in ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a']):
continue
base, ext = os.path.splitext(filename)
clean_base = base.strip('_- ')
new_filename = f"{clean_base}_{filename_model}{ext}"
new_file_path = os.path.join(folder, new_filename)
os.rename(file_path, new_file_path)
rename_files_with_model(OUTPUT_DIR, filename_model)
output_files = os.listdir(OUTPUT_DIR)
def find_file(keyword):
matching_files = [
os.path.join(OUTPUT_DIR, f) for f in output_files
if keyword in f.lower()
]
return matching_files[0] if matching_files else None
vocal_file = find_file('vocals')
instrumental_file = find_file('instrumental')
phaseremix_file = find_file('phaseremix')
drum_file = find_file('drum')
bass_file = find_file('bass')
other_file = find_file('other')
effects_file = find_file('effects')
speech_file = find_file('speech')
music_file = find_file('music')
dry_file = find_file('dry')
male_file = find_file('male')
female_file = find_file('female')
bleed_file = find_file('bleed')
karaoke_file = find_file('karaoke')
return (
vocal_file or None,
instrumental_file or None,
phaseremix_file or None,
drum_file or None,
bass_file or None,
other_file or None,
effects_file or None,
speech_file or None,
music_file or None,
dry_file or None,
male_file or None,
female_file or None,
bleed_file or None,
karaoke_file or None
)
except Exception as e:
print(f"An error occurred: {e}")
return (None,) * 14
clear_directory(INPUT_DIR)
def process_audio(input_audio_file, model, chunk_size, overlap, export_format, use_tta, demud_phaseremix_inst, extract_instrumental, clean_model, *args, **kwargs):
"""Processes audio using the specified model and returns separated stems."""
if input_audio_file is not None:
audio_path = input_audio_file.name
else:
existing_files = os.listdir(INPUT_DIR)
if existing_files:
audio_path = os.path.join(INPUT_DIR, existing_files[0])
else:
print("No audio file provided and no existing file in input directory.")
return [None] * 14
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(OLD_OUTPUT_DIR, exist_ok=True)
move_old_files(OUTPUT_DIR)
clean_model_name_full = extract_model_name(model)
print(f"Processing audio from: {audio_path} using model: {clean_model_name_full}")
model_type, config_path, start_check_point = get_model_config(clean_model_name_full, chunk_size, overlap)
outputs = run_command_and_process_files(
model_type=model_type,
config_path=config_path,
start_check_point=start_check_point,
INPUT_DIR=INPUT_DIR,
OUTPUT_DIR=OUTPUT_DIR,
extract_instrumental=extract_instrumental,
use_tta=use_tta,
demud_phaseremix_inst=demud_phaseremix_inst,
clean_model=clean_model_name_full
)
return outputs
def ensemble_audio_fn(files, method, weights):
try:
if len(files) < 2:
return None, "⚠️ Minimum 2 files required"
valid_files = [f for f in files if os.path.exists(f)]
if len(valid_files) < 2:
return None, "❌ Valid files not found"
output_dir = os.path.join(BASE_DIR, "ensembles") # BASE_DIR üzerinden dinamik
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = f"{output_dir}/ensemble_{timestamp}.wav"
ensemble_args = [
"--files", *valid_files,
"--type", method.lower().replace(' ', '_'),
"--output", output_path
]
if weights and weights.strip():
weights_list = [str(w) for w in map(float, weights.split(','))]
ensemble_args += ["--weights", *weights_list]
result = subprocess.run(
["python", "ensemble.py"] + ensemble_args,
capture_output=True,
text=True
)
log = f"✅ Success!\n{result.stdout}" if not result.stderr else f"❌ Error!\n{result.stderr}"
return output_path, log
except Exception as e:
return None, f"⛔ Critical Error: {str(e)}"
def auto_ensemble_process(input_audio_file, selected_models, chunk_size, overlap, export_format, use_tta, extract_instrumental, ensemble_type, _state, *args, **kwargs):
"""Processes audio with multiple models and performs ensemble."""
try:
if not selected_models or len(selected_models) < 1:
return None, "❌ No models selected"
if input_audio_file is None:
existing_files = os.listdir(INPUT_DIR)
if not existing_files:
return None, "❌ No input audio provided"
audio_path = os.path.join(INPUT_DIR, existing_files[0])
else:
audio_path = input_audio_file.name
# AUTO_ENSEMBLE_TEMP'i de BASE_DIR üzerinden tanımla
auto_ensemble_temp = os.path.join(BASE_DIR, "auto_ensemble_temp")
os.makedirs(auto_ensemble_temp, exist_ok=True)
os.makedirs(AUTO_ENSEMBLE_OUTPUT, exist_ok=True)
clear_directory(auto_ensemble_temp)
all_outputs = []
for model in selected_models:
clean_model = extract_model_name(model)
model_output_dir = os.path.join(auto_ensemble_temp, clean_model)
os.makedirs(model_output_dir, exist_ok=True)
model_type, config_path, start_check_point = get_model_config(clean_model, chunk_size, overlap)
cmd = [
"python", INFERENCE_PATH,
"--model_type", model_type,
"--config_path", config_path,
"--start_check_point", start_check_point,
"--input_folder", INPUT_DIR,
"--store_dir", model_output_dir,
]
if use_tta:
cmd.append("--use_tta")
if extract_instrumental:
cmd.append("--extract_instrumental")
print(f"Running command: {' '.join(cmd)}")
try:
result = subprocess.run(cmd, capture_output=True, text=True)
print(result.stdout)
if result.returncode != 0:
print(f"Error: {result.stderr}")
return None, f"Model {model} failed: {result.stderr}"
except Exception as e:
return None, f"Critical error with {model}: {str(e)}"
model_outputs = glob.glob(os.path.join(model_output_dir, "*.wav"))
if not model_outputs:
raise FileNotFoundError(f"{model} failed to produce output")
all_outputs.extend(model_outputs)
def wait_for_files(files, timeout=300):
start = time.time()
while time.time() - start < timeout:
missing = [f for f in files if not os.path.exists(f)]
if not missing:
return True
time.sleep(5)
raise TimeoutError(f"Missing files: {missing[:3]}...")
wait_for_files(all_outputs)
quoted_files = [f'"{f}"' for f in all_outputs]
timestamp = str(int(time.time()))
output_path = os.path.join(AUTO_ENSEMBLE_OUTPUT, f"ensemble_{timestamp}.wav")
ensemble_cmd = [
"python", "ensemble.py",
"--files", *quoted_files,
"--type", ensemble_type,
"--output", f'"{output_path}"'
]
result = subprocess.run(
" ".join(ensemble_cmd),
shell=True,
capture_output=True,
text=True,
check=True
)
if not os.path.exists(output_path):
raise RuntimeError("Ensemble dosyası oluşturulamadı")
return output_path, "✅ Success!"
except Exception as e:
return None, f"❌ Error: {str(e)}"
finally:
shutil.rmtree(auto_ensemble_temp, ignore_errors=True)
gc.collect()
|