File size: 8,986 Bytes
3978e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import sys
import argparse

# Добавляем корень репозитория в системный путь
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))

from valid import check_validation
from inference import proc_folder
from train import train_model
from scripts.redact_config import redact_config
from scripts.valid_to_inference import copying_files
from scripts.trim import trim_directory

base_args = {
    'device_ids': '0',
    'model_type': '',
    'start_check_point': '',
    'config_path': '',
    'data_path': '',
    'valid_path': '',
    'results_path': 'tests/train_results',
    'store_dir': 'tests/valid_inference_result',
    'input_folder': '',
    'metrics': ['neg_log_wmse', 'l1_freq', 'si_sdr', 'sdr', 'aura_stft', 'aura_mrstft', 'bleedless', 'fullness'],
    'max_folders': 2
}


def parse_args(dict_args):
    parser = argparse.ArgumentParser()
    parser.add_argument("--check_train", action='store_true', help="Check train or not")
    parser.add_argument("--check_valid", action='store_true', help="Check train or not")
    parser.add_argument("--check_inference", action='store_true', help="Check train or not")
    parser.add_argument('--device_ids', type=str, help='Device IDs for training/inference')
    parser.add_argument('--model_type', type=str, help='Model type')
    parser.add_argument('--start_check_point', type=str, help='Path to the checkpoint to start from')
    parser.add_argument('--config_path', type=str, help='Path to the configuration file')
    parser.add_argument('--data_path', type=str, help='Path to the training data')
    parser.add_argument('--valid_path', type=str, help='Path to the validation data')
    parser.add_argument('--results_path', type=str, help='Path to save training results')
    parser.add_argument('--store_dir', type=str, help='Path to store validation/inference results')
    parser.add_argument('--input_folder', type=str, help='Path to the input folder for inference')
    parser.add_argument('--metrics', nargs='+', help='List of metrics to evaluate')
    parser.add_argument('--max_folders', type=str, help='Maximum number of folders to process')
    parser.add_argument("--dataset_type", type=int, default=1,
                        help="Dataset type. Must be one of: 1, 2, 3 or 4.")
    parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers")
    parser.add_argument("--pin_memory", action='store_true', help="dataloader pin_memory")
    parser.add_argument("--seed", type=int, default=0, help="random seed")
    parser.add_argument("--use_multistft_loss", action='store_true',
                        help="Use MultiSTFT Loss (from auraloss package)")
    parser.add_argument("--use_mse_loss", action='store_true', help="Use default MSE loss")
    parser.add_argument("--use_l1_loss", action='store_true', help="Use L1 loss")
    parser.add_argument("--wandb_key", type=str, default='', help='wandb API Key')
    parser.add_argument("--pre_valid", action='store_true', help='Run validation before training')
    parser.add_argument("--metric_for_scheduler", default="sdr",
                        choices=['sdr', 'l1_freq', 'si_sdr', 'neg_log_wmse', 'aura_stft', 'aura_mrstft', 'bleedless',
                                 'fullness'], help='Metric which will be used for scheduler.')
    parser.add_argument("--train_lora", action='store_true', help="Train with LoRA")
    parser.add_argument("--lora_checkpoint", type=str, default='', help="Initial checkpoint to LoRA weights")
    parser.add_argument("--extension", type=str, default='wav', help="Choose extension for validation")
    parser.add_argument("--use_tta", action='store_true',
                        help="Flag adds test time augmentation during inference (polarity and channel inverse)."
                        " While this triples the runtime, it reduces noise and slightly improves prediction quality.")
    parser.add_argument("--extract_instrumental", action='store_true',
                        help="invert vocals to get instrumental if provided")
    parser.add_argument("--disable_detailed_pbar", action='store_true', help="disable detailed progress bar")
    parser.add_argument("--force_cpu", action='store_true', help="Force the use of CPU even if CUDA is available")
    parser.add_argument("--flac_file", action='store_true', help="Output flac file instead of wav")
    parser.add_argument("--pcm_type", type=str, choices=['PCM_16', 'PCM_24'], default='PCM_24',
                        help="PCM type for FLAC files (PCM_16 or PCM_24)")
    parser.add_argument("--draw_spectro", type=float, default=0,
                        help="If --store_dir is set then code will generate spectrograms for resulted stems as well."
                             " Value defines for how many seconds os track spectrogram will be generated.")

    if dict_args is not None:
        args = parser.parse_args([])
        args_dict = vars(args)
        args_dict.update(dict_args)
        args = argparse.Namespace(**args_dict)
    else:
        args = parser.parse_args()

    return args


def test_settings(dict_args, test_type):

    # Parse from cmd
    cli_args = parse_args(dict_args)

    # If args from cmd, add or replace in base_args
    for key, value in vars(cli_args).items():
        if value is not None:
            base_args[key] = value

    if test_type == 'user':
        # Check required arguments
        missing_args = [arg for arg in ['model_type', 'config_path', 'start_check_point', 'data_path', 'valid_path'] if
                        not base_args[arg]]
        if missing_args:
            missing_args_str = ', '.join(f'--{arg}' for arg in missing_args)
            raise ValueError(
                f"The following arguments are required but missing: {missing_args_str}."
                f" Please specify them either via command-line arguments or directly in `base_args`.")

        # Replace config
        base_args['config_path'] = redact_config({'orig_config': base_args['config_path'],
                                                  'model_type': base_args['model_type'],
                                                  'new_config': ''})

        # Trim train
        trim_args_train = {'input_directory': base_args['data_path'],
                           'max_folders': base_args['max_folders']}
        base_args['data_path'] = trim_directory(trim_args_train)
        # Trim valid
        trim_args_valid = {'input_directory': base_args['valid_path'],
                           'max_folders': base_args['max_folders']}
        base_args['valid_path'] = trim_directory(trim_args_valid)
    # Valid to inference
    if not base_args['input_folder']:
        tests_dir = os.path.join(os.path.dirname(base_args['valid_path']), 'for_inference')
        base_args['input_folder'] = tests_dir
    val_to_inf_args = {'valid_path': base_args['valid_path'],
                       'inference_dir': base_args['input_folder'],
                       'max_mixtures': 1}
    copying_files(val_to_inf_args)

    if base_args['check_valid']:
        valid_args = {key: base_args[key] for key in ['model_type', 'config_path', 'start_check_point',
                                               'store_dir', 'device_ids', 'num_workers', 'pin_memory', 'extension',
                                               'use_tta', 'metrics', 'lora_checkpoint', 'draw_spectro']}
        valid_args['valid_path'] = [base_args['valid_path']]
        print('Start validation.')
        check_validation(valid_args)
        print(f'Validation ended. See results in {base_args["store_dir"]}')

    if base_args['check_inference']:
        inference_args = {key: base_args[key] for key in ['model_type', 'config_path', 'start_check_point', 'input_folder',
                                               'store_dir', 'device_ids', 'extract_instrumental',
                                               'disable_detailed_pbar', 'force_cpu', 'flac_file', 'pcm_type',
                                               'use_tta', 'lora_checkpoint', 'draw_spectro']}

        print('Start inference.')
        proc_folder(inference_args)
        print(f'Inference ended. See results in {base_args["store_dir"]}')

    if base_args['check_train']:
        train_args = {key: base_args[key] for key in ['model_type', 'config_path', 'start_check_point', 'results_path',
                                               'data_path', 'dataset_type', 'valid_path', 'num_workers', 'pin_memory',
                                               'seed', 'device_ids', 'use_multistft_loss', 'use_mse_loss',
                                               'use_l1_loss', 'wandb_key', 'pre_valid', 'metrics',
                                               'metric_for_scheduler', 'train_lora', 'lora_checkpoint']}

        print('Start train.')
        train_model(train_args)

    print('End!')


if __name__ == "__main__":
    test_settings(None, 'user')