File size: 24,370 Bytes
3978e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import numpy as np
import torch
import torch.nn as nn
import yaml
import os
import soundfile as sf
import matplotlib.pyplot as plt
from ml_collections import ConfigDict
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from typing import Dict, List, Tuple, Any, Union
import loralib as lora
def load_config(model_type: str, config_path: str) -> Union[ConfigDict, OmegaConf]:
"""
Load the configuration from the specified path based on the model type.
Parameters:
----------
model_type : str
The type of model to load (e.g., 'htdemucs', 'mdx23c', etc.).
config_path : str
The path to the YAML or OmegaConf configuration file.
Returns:
-------
config : Any
The loaded configuration, which can be in different formats (e.g., OmegaConf or ConfigDict).
Raises:
------
FileNotFoundError:
If the configuration file at `config_path` is not found.
ValueError:
If there is an error loading the configuration file.
"""
try:
with open(config_path, 'r') as f:
if model_type == 'htdemucs':
config = OmegaConf.load(config_path)
else:
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
return config
except FileNotFoundError:
raise FileNotFoundError(f"Configuration file not found at {config_path}")
except Exception as e:
raise ValueError(f"Error loading configuration: {e}")
def get_model_from_config(model_type: str, config_path: str) -> Tuple:
"""
Load the model specified by the model type and configuration file.
Parameters:
----------
model_type : str
The type of model to load (e.g., 'mdx23c', 'htdemucs', 'scnet', etc.).
config_path : str
The path to the configuration file (YAML or OmegaConf format).
Returns:
-------
model : nn.Module or None
The initialized model based on the `model_type`, or None if the model type is not recognized.
config : Any
The configuration used to initialize the model. This could be in different formats
depending on the model type (e.g., OmegaConf, ConfigDict).
Raises:
------
ValueError:
If the `model_type` is unknown or an error occurs during model initialization.
"""
config = load_config(model_type, config_path)
if model_type == 'mdx23c':
from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net
model = TFC_TDF_net(config)
elif model_type == 'htdemucs':
from models.demucs4ht import get_model
model = get_model(config)
elif model_type == 'segm_models':
from models.segm_models import Segm_Models_Net
model = Segm_Models_Net(config)
elif model_type == 'torchseg':
from models.torchseg_models import Torchseg_Net
model = Torchseg_Net(config)
elif model_type == 'mel_band_roformer':
from models.bs_roformer import MelBandRoformer
model = MelBandRoformer(**dict(config.model))
elif model_type == 'bs_roformer':
from models.bs_roformer import BSRoformer
model = BSRoformer(**dict(config.model))
elif model_type == 'swin_upernet':
from models.upernet_swin_transformers import Swin_UperNet_Model
model = Swin_UperNet_Model(config)
elif model_type == 'bandit':
from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple
model = MultiMaskMultiSourceBandSplitRNNSimple(**config.model)
elif model_type == 'bandit_v2':
from models.bandit_v2.bandit import Bandit
model = Bandit(**config.kwargs)
elif model_type == 'scnet_unofficial':
from models.scnet_unofficial import SCNet
model = SCNet(**config.model)
elif model_type == 'scnet':
from models.scnet import SCNet
model = SCNet(**config.model)
elif model_type == 'apollo':
from models.look2hear.models import BaseModel
model = BaseModel.apollo(**config.model)
elif model_type == 'bs_mamba2':
from models.ts_bs_mamba2 import Separator
model = Separator(**config.model)
elif model_type == 'experimental_mdx23c_stht':
from models.mdx23c_tfc_tdf_v3_with_STHT import TFC_TDF_net
model = TFC_TDF_net(config)
else:
raise ValueError(f"Unknown model type: {model_type}")
return model, config
def read_audio_transposed(path: str, instr: str = None, skip_err: bool = False) -> Tuple[np.ndarray, int]:
"""
Reads an audio file, ensuring mono audio is converted to two-dimensional format,
and transposes the data to have channels as the first dimension.
Parameters
----------
path : str
Path to the audio file.
skip_err: bool
If true, not raise errors
instr:
name of instument
Returns
-------
Tuple[np.ndarray, int]
A tuple containing:
- Transposed audio data as a NumPy array with shape (channels, length).
For mono audio, the shape will be (1, length).
- Sampling rate (int), e.g., 44100.
"""
try:
mix, sr = sf.read(path)
except Exception as e:
if skip_err:
print(f"No stem {instr}: skip!")
return None, None
else:
raise RuntimeError(f"Error reading the file at {path}: {e}")
else:
if len(mix.shape) == 1: # For mono audio
mix = np.expand_dims(mix, axis=-1)
return mix.T, sr
def normalize_audio(audio: np.ndarray) -> tuple[np.ndarray, Dict[str, float]]:
"""
Normalize an audio signal by subtracting the mean and dividing by the standard deviation.
Parameters:
----------
audio : np.ndarray
Input audio array with shape (channels, time) or (time,).
Returns:
-------
tuple[np.ndarray, dict[str, float]]
- Normalized audio array with the same shape as the input.
- Dictionary containing the mean and standard deviation of the original audio.
"""
mono = audio.mean(0)
mean, std = mono.mean(), mono.std()
return (audio - mean) / std, {"mean": mean, "std": std}
def denormalize_audio(audio: np.ndarray, norm_params: Dict[str, float]) -> np.ndarray:
"""
Denormalize an audio signal by reversing the normalization process (multiplying by the standard deviation
and adding the mean).
Parameters:
----------
audio : np.ndarray
Normalized audio array to be denormalized.
norm_params : dict[str, float]
Dictionary containing the 'mean' and 'std' values used for normalization.
Returns:
-------
np.ndarray
Denormalized audio array with the same shape as the input.
"""
return audio * norm_params["std"] + norm_params["mean"]
def apply_tta(
config,
model: torch.nn.Module,
mix: torch.Tensor,
waveforms_orig: Dict[str, torch.Tensor],
device: torch.device,
model_type: str
) -> Dict[str, torch.Tensor]:
"""
Apply Test-Time Augmentation (TTA) for source separation.
This function processes the input mixture with test-time augmentations, including
channel inversion and polarity inversion, to enhance the separation results. The
results from all augmentations are averaged to produce the final output.
Parameters:
----------
config : Any
Configuration object containing model and processing parameters.
model : torch.nn.Module
The trained model used for source separation.
mix : torch.Tensor
The mixed audio tensor with shape (channels, time).
waveforms_orig : Dict[str, torch.Tensor]
Dictionary of original separated waveforms (before TTA) for each instrument.
device : torch.device
Device (CPU or CUDA) on which the model will be executed.
model_type : str
Type of the model being used (e.g., "demucs", "custom_model").
Returns:
-------
Dict[str, torch.Tensor]
Updated dictionary of separated waveforms after applying TTA.
"""
# Create augmentations: channel inversion and polarity inversion
track_proc_list = [mix[::-1].copy(), -1.0 * mix.copy()]
# Process each augmented mixture
for i, augmented_mix in enumerate(track_proc_list):
waveforms = demix(config, model, augmented_mix, device, model_type=model_type)
for el in waveforms:
if i == 0:
waveforms_orig[el] += waveforms[el][::-1].copy()
else:
waveforms_orig[el] -= waveforms[el]
# Average the results across augmentations
for el in waveforms_orig:
waveforms_orig[el] /= len(track_proc_list) + 1
return waveforms_orig
def _getWindowingArray(window_size: int, fade_size: int) -> torch.Tensor:
"""
Generate a windowing array with a linear fade-in at the beginning and a fade-out at the end.
This function creates a window of size `window_size` where the first `fade_size` elements
linearly increase from 0 to 1 (fade-in) and the last `fade_size` elements linearly decrease
from 1 to 0 (fade-out). The middle part of the window is filled with ones.
Parameters:
----------
window_size : int
The total size of the window.
fade_size : int
The size of the fade-in and fade-out regions.
Returns:
-------
torch.Tensor
A tensor of shape (window_size,) containing the generated windowing array.
Example:
-------
If `window_size=10` and `fade_size=3`, the output will be:
tensor([0.0000, 0.5000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.5000, 0.0000])
"""
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window = torch.ones(window_size)
window[-fade_size:] = fadeout
window[:fade_size] = fadein
return window
def demix(
config: ConfigDict,
model: torch.nn.Module,
mix: torch.Tensor,
device: torch.device,
model_type: str,
pbar: bool = False
) -> Tuple[List[Dict[str, np.ndarray]], np.ndarray]:
"""
Unified function for audio source separation with support for multiple processing modes.
This function separates audio into its constituent sources using either a generic custom logic
or a Demucs-specific logic. It supports batch processing and overlapping window-based chunking
for efficient and artifact-free separation.
Parameters:
----------
config : ConfigDict
Configuration object containing audio and inference settings.
model : torch.nn.Module
The trained model used for audio source separation.
mix : torch.Tensor
Input audio tensor with shape (channels, time).
device : torch.device
The computation device (CPU or CUDA).
model_type : str, optional
Processing mode:
- "demucs" for logic specific to the Demucs model.
Default is "generic".
pbar : bool, optional
If True, displays a progress bar during chunk processing. Default is False.
Returns:
-------
Union[Dict[str, np.ndarray], np.ndarray]
- A dictionary mapping target instruments to separated audio sources if multiple instruments are present.
- A numpy array of the separated source if only one instrument is present.
"""
mix = torch.tensor(mix, dtype=torch.float32)
if model_type == 'htdemucs':
mode = 'demucs'
else:
mode = 'generic'
# Define processing parameters based on the mode
if mode == 'demucs':
chunk_size = config.training.samplerate * config.training.segment
num_instruments = len(config.training.instruments)
num_overlap = config.inference.num_overlap
step = chunk_size // num_overlap
else:
chunk_size = config.audio.chunk_size
num_instruments = len(prefer_target_instrument(config))
num_overlap = config.inference.num_overlap
fade_size = chunk_size // 10
step = chunk_size // num_overlap
border = chunk_size - step
length_init = mix.shape[-1]
windowing_array = _getWindowingArray(chunk_size, fade_size)
# Add padding for generic mode to handle edge artifacts
if length_init > 2 * border and border > 0:
mix = nn.functional.pad(mix, (border, border), mode="reflect")
batch_size = config.inference.batch_size
use_amp = getattr(config.training, 'use_amp', True)
with torch.cuda.amp.autocast(enabled=use_amp):
with torch.inference_mode():
# Initialize result and counter tensors
req_shape = (num_instruments,) + mix.shape
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
progress_bar = tqdm(
total=mix.shape[1], desc="Processing audio chunks", leave=False
) if pbar else None
while i < mix.shape[1]:
# Extract chunk and apply padding if necessary
part = mix[:, i:i + chunk_size].to(device)
chunk_len = part.shape[-1]
if mode == "generic" and chunk_len > chunk_size // 2:
pad_mode = "reflect"
else:
pad_mode = "constant"
part = nn.functional.pad(part, (0, chunk_size - chunk_len), mode=pad_mode, value=0)
batch_data.append(part)
batch_locations.append((i, chunk_len))
i += step
# Process batch if it's full or the end is reached
if len(batch_data) >= batch_size or i >= mix.shape[1]:
arr = torch.stack(batch_data, dim=0)
x = model(arr)
if mode == "generic":
window = windowing_array.clone() # using clone() fixes the clicks at chunk edges when using batch_size=1
if i - step == 0: # First audio chunk, no fadein
window[:fade_size] = 1
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window[-fade_size:] = 1
for j, (start, seg_len) in enumerate(batch_locations):
if mode == "generic":
result[..., start:start + seg_len] += x[j, ..., :seg_len].cpu() * window[..., :seg_len]
counter[..., start:start + seg_len] += window[..., :seg_len]
else:
result[..., start:start + seg_len] += x[j, ..., :seg_len].cpu()
counter[..., start:start + seg_len] += 1.0
batch_data.clear()
batch_locations.clear()
if progress_bar:
progress_bar.update(step)
if progress_bar:
progress_bar.close()
# Compute final estimated sources
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
# Remove padding for generic mode
if mode == "generic":
if length_init > 2 * border and border > 0:
estimated_sources = estimated_sources[..., border:-border]
# Return the result as a dictionary or a single array
if mode == "demucs":
instruments = config.training.instruments
else:
instruments = prefer_target_instrument(config)
ret_data = {k: v for k, v in zip(instruments, estimated_sources)}
if mode == "demucs" and num_instruments <= 1:
return estimated_sources
else:
return ret_data
def prefer_target_instrument(config: ConfigDict) -> List[str]:
"""
Return the list of target instruments based on the configuration.
If a specific target instrument is specified in the configuration,
it returns a list with that instrument. Otherwise, it returns the list of instruments.
Parameters:
----------
config : ConfigDict
Configuration object containing the list of instruments or the target instrument.
Returns:
-------
List[str]
A list of target instruments.
"""
if getattr(config.training, 'target_instrument', None):
return [config.training.target_instrument]
else:
return config.training.instruments
def load_not_compatible_weights(model: torch.nn.Module, weights: str, verbose: bool = False) -> None:
"""
Load weights into a model, handling mismatched shapes and dimensions.
Args:
model: PyTorch model into which the weights will be loaded.
weights: Path to the weights file.
verbose: If True, prints detailed information about matching and mismatched layers.
"""
new_model = model.state_dict()
old_model = torch.load(weights)
if 'state' in old_model:
# Fix for htdemucs weights loading
old_model = old_model['state']
if 'state_dict' in old_model:
# Fix for apollo weights loading
old_model = old_model['state_dict']
for el in new_model:
if el in old_model:
if verbose:
print(f'Match found for {el}!')
if new_model[el].shape == old_model[el].shape:
if verbose:
print('Action: Just copy weights!')
new_model[el] = old_model[el]
else:
if len(new_model[el].shape) != len(old_model[el].shape):
if verbose:
print('Action: Different dimension! Too lazy to write the code... Skip it')
else:
if verbose:
print(f'Shape is different: {tuple(new_model[el].shape)} != {tuple(old_model[el].shape)}')
ln = len(new_model[el].shape)
max_shape = []
slices_old = []
slices_new = []
for i in range(ln):
max_shape.append(max(new_model[el].shape[i], old_model[el].shape[i]))
slices_old.append(slice(0, old_model[el].shape[i]))
slices_new.append(slice(0, new_model[el].shape[i]))
# print(max_shape)
# print(slices_old, slices_new)
slices_old = tuple(slices_old)
slices_new = tuple(slices_new)
max_matrix = np.zeros(max_shape, dtype=np.float32)
for i in range(ln):
max_matrix[slices_old] = old_model[el].cpu().numpy()
max_matrix = torch.from_numpy(max_matrix)
new_model[el] = max_matrix[slices_new]
else:
if verbose:
print(f'Match not found for {el}!')
model.load_state_dict(
new_model
)
def load_lora_weights(model: torch.nn.Module, lora_path: str, device: str = 'cpu') -> None:
"""
Load LoRA weights into a model.
This function updates the given model with LoRA-specific weights from the specified checkpoint file.
It does not require the checkpoint to match the model's full state dictionary, as only LoRA layers are updated.
Parameters:
----------
model : Module
The PyTorch model into which the LoRA weights will be loaded.
lora_path : str
Path to the LoRA checkpoint file.
device : str, optional
The device to load the weights onto, by default 'cpu'. Common values are 'cpu' or 'cuda'.
Returns:
-------
None
The model is updated in place.
"""
lora_state_dict = torch.load(lora_path, map_location=device)
model.load_state_dict(lora_state_dict, strict=False)
def load_start_checkpoint(args: argparse.Namespace, model: torch.nn.Module, type_='train') -> None:
"""
Load the starting checkpoint for a model.
Args:
args: Parsed command-line arguments containing the checkpoint path.
model: PyTorch model to load the checkpoint into.
type_: how to load weights - for train we can load not fully compatible weights
"""
print(f'Start from checkpoint: {args.start_check_point}')
if type_ in ['train']:
if 1:
load_not_compatible_weights(model, args.start_check_point, verbose=False)
else:
model.load_state_dict(torch.load(args.start_check_point))
else:
device='cpu'
if args.model_type in ['htdemucs', 'apollo']:
state_dict = torch.load(args.start_check_point, map_location=device, weights_only=False)
# Fix for htdemucs pretrained models
if 'state' in state_dict:
state_dict = state_dict['state']
# Fix for apollo pretrained models
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
else:
state_dict = torch.load(args.start_check_point, map_location=device, weights_only=True)
model.load_state_dict(state_dict)
if args.lora_checkpoint:
print(f"Loading LoRA weights from: {args.lora_checkpoint}")
load_lora_weights(model, args.lora_checkpoint)
def bind_lora_to_model(config: Dict[str, Any], model: nn.Module) -> nn.Module:
"""
Replaces specific layers in the model with LoRA-extended versions.
Parameters:
----------
config : Dict[str, Any]
Configuration containing parameters for LoRA. It should include a 'lora' key with parameters for `MergedLinear`.
model : nn.Module
The original model in which the layers will be replaced.
Returns:
-------
nn.Module
The modified model with the replaced layers.
"""
if 'lora' not in config:
raise ValueError("Configuration must contain the 'lora' key with parameters for LoRA.")
replaced_layers = 0 # Counter for replaced layers
for name, module in model.named_modules():
hierarchy = name.split('.')
layer_name = hierarchy[-1]
# Check if this is the target layer to replace (and layer_name == 'to_qkv')
if isinstance(module, nn.Linear):
try:
# Get the parent module
parent_module = model
for submodule_name in hierarchy[:-1]:
parent_module = getattr(parent_module, submodule_name)
# Replace the module with LoRA-enabled layer
setattr(
parent_module,
layer_name,
lora.MergedLinear(
in_features=module.in_features,
out_features=module.out_features,
bias=module.bias is not None,
**config['lora']
)
)
replaced_layers += 1 # Increment the counter
except Exception as e:
print(f"Error replacing layer {name}: {e}")
if replaced_layers == 0:
print("Warning: No layers were replaced. Check the model structure and configuration.")
else:
print(f"Number of layers replaced with LoRA: {replaced_layers}")
return model
def draw_spectrogram(waveform, sample_rate, length, output_file):
import librosa.display
# Cut only required part of spectorgram
x = waveform[:int(length * sample_rate), :]
X = librosa.stft(x.mean(axis=-1)) # perform short-term fourier transform on mono signal
Xdb = librosa.amplitude_to_db(np.abs(X), ref=np.max) # convert an amplitude spectrogram to dB-scaled spectrogram.
fig, ax = plt.subplots()
# plt.figure(figsize=(30, 10)) # initialize the fig size
img = librosa.display.specshow(
Xdb,
cmap='plasma',
sr=sample_rate,
x_axis='time',
y_axis='linear',
ax=ax
)
ax.set(title='File: ' + os.path.basename(output_file))
fig.colorbar(img, ax=ax, format="%+2.f dB")
if output_file is not None:
plt.savefig(output_file)
|